×

On Grothendieck-Serre’s conjecture concerning principal \(G\)-bundles over reductive group schemes: I. (English) Zbl 1317.14102

The Grothendieck-Serre conjecture for principal bundles asserts that for any regular local ring \(R\) with \(K = \mathrm{Frac}(R)\) and a reductive \(R\)-group scheme \(G\), the map \(H^1_{\mathrm{\'{e}t}}(R, G) \to H^1_{\mathrm{\'{e}t}}(K, G)\) induced by \(R \hookrightarrow K\) has trivial kernel. The main theorem of this paper under review proves such an injectivity result for \(G\) isotropic, simple and simply connected and for certain rings \(R\). Here isotropy means that \(G\) contains a \(\mathbb{G}_{m,R}\).
Specifically, it is proved that that \(H^1_{\mathrm{\'{e}t}}(\mathcal{O} \otimes_k A, G) \to H^1_{\mathrm{\'{e}t}}(K \otimes_k A, G)\) has trivial kernel in the following situation: \(k\) is an infinite field, \(\mathcal{O}\) is the semi-local ring of finitely many closed points on a smooth irreducible affine \(k\)-variety, \(K = \mathrm{Frac}(\mathcal{O})\), \(G\) is an isotropic and simply connected \(\mathcal{O}\)-group scheme and \(A\) is any Noetherian \(k\)-algebra.
As a corollary, one proves for any regular domain \(R \supset \mathbb{Q}\) and any isotropic simple simply connected \(R\)-group scheme \(G\), the map \(H^1_{\mathrm{\'{e}t}}(R[t_1, \ldots, t_n], G) \to H^1_{\mathrm{\'{e}t}}(R, G)\) induced by evaluation at \(t_1 = \cdots = t_n = 0\) has trivial kernel. This result is false if the isotropy condition is dropped.

MSC:

14L15 Group schemes
20G41 Exceptional groups
20G35 Linear algebraic groups over adèles and other rings and schemes
20G99 Linear algebraic groups and related topics

References:

[1] doi:10.1007/PL00004859 · Zbl 1042.11024 · doi:10.1007/PL00004859
[4] doi:10.2307/1970394 · Zbl 0131.26501 · doi:10.2307/1970394
[8] doi:10.1007/BF02840656 · Zbl 0587.14007 · doi:10.1007/BF02840656
[9] doi:10.1007/BF01884296 · Zbl 0829.14009 · doi:10.1007/BF01884296
[10] doi:10.1007/BF01231567 · Zbl 0807.14012 · doi:10.1007/BF01231567
[11] doi:10.1007/BF01443521 · Zbl 0661.14016 · doi:10.1007/BF01443521
[13] doi:10.1007/BF01135540 · Zbl 0373.20045 · doi:10.1007/BF01135540
[17] doi:10.1007/BF02684322 · doi:10.1007/BF02684322
[18] doi:10.1007/BF02698831 · Zbl 0983.14007 · doi:10.1007/BF02698831
[19] doi:10.1007/BF02684273 · doi:10.1007/BF02684273
[20] doi:10.2307/1970974 · Zbl 0316.14016 · doi:10.2307/1970974
[21] doi:10.1016/0021-8693(87)90026-3 · Zbl 0597.14014 · doi:10.1016/0021-8693(87)90026-3
[24] doi:10.1007/BF02699492 · Zbl 0795.14029 · doi:10.1007/BF02699492
[28] doi:10.2307/1970833 · Zbl 0272.14013 · doi:10.2307/1970833
[30] doi:10.1080/00927878808823669 · Zbl 0656.13018 · doi:10.1080/00927878808823669
[32] doi:10.1016/0001-8708(86)90085-X · Zbl 0604.10008 · doi:10.1016/0001-8708(86)90085-X
[34] doi:10.1016/0021-8693(71)90133-5 · Zbl 0223.16006 · doi:10.1016/0021-8693(71)90133-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.