×

Locally trivial principal homogeneous spaces. (Espaces principaux homogènes localement triviaux.) (French) Zbl 0795.14029

The following conjecture was made by J.-P. Serre and A. Grothendieck in 1958:
Let \(X\) be a smooth, irreducible variety over an algebraically closed field \(k\); let \(G\) be a connected reductive \(k\)-group. Then every principal homogeneous space over \(G\), with base \(X\) and having a rational section, is locally trivial in the Zariski topology.
This conjecture is solved in the paper under review, with weaker assumptions on \(k\) and \(G\). Namely, it holds when
(i) \(k\) is infinite and perfect, and \(G\) is linear and smooth (theorem 3.2); or when
(ii) \(k\) is infinite, \(G\) is reductive, and every \(k\)-simple component of the derived group of \(G\) is \(k\)-isotropic (theorem 2.1).
More generally, the authors consider the following conjecture of A. Grothendieck [in Dix Exposés Cohomologie Schémas, Adv. Stud. Pure Math. 3, 67–87 (1968; Zbl 0198.25803)]:
Let \(A\) be a regular local ring, with the field of fractions \(K\). Let \(G\) be a reductive group scheme over \(A\). Then the map of pointed sets \(H^ 1(A,G)\to H^ 1(K,G_ K)\) has a trivial kernel.
This conjecture is established in various cases; in theorem 1.1, the authors reduce it to checking that the functor \(X\to H^ 1(X,G)\) commutes with inductive limits (Property P1), satisfies a weak form of homotopic invariance (P2), and satisfies a glueing property (P3). The most difficult point is (P2), for which results of M. S. Raghunathan [Math. Ann. 285, No. 2, 309–332 (1989; Zbl 0672.14007)] are used. This approach can be followed for other functors, e.g. \(K\)- functors; see §4. In §5, an anlogue of Gersten’s conjecture is formulated and studied, by expanding ideas of D. Quillen [in Algebraic \(K\)-theory I, Proc. Conf. Battelle Inst. 1972, Lect. Notes Math. 341, 85–147 (1973; Zbl 0292.18004)].

MSC:

14M17 Homogeneous spaces and generalizations
14L15 Group schemes
20G15 Linear algebraic groups over arbitrary fields

References:

[1] H. Bass,Algebraic K-theory, New York, Benjamin, 1968. · Zbl 0174.30302
[2] S. M. Bhatwadekar, Analytic isomorphisms and category of finitely generated modules,Comm. in Algebra,16 (1988), 1949–1958. · Zbl 0656.13018 · doi:10.1080/00927878808823669
[3] S. Bloch andA. Ogus, Gersten’s conjecture and the homology of schemes,Ann. Scient. Ec. Norm. Sup., 4e série,7 (1974), 181–202. · Zbl 0307.14008
[4] A. Borel,Linear Algebraic Groups, New York, Benjamin, 1969. · Zbl 0206.49801
[5] J.-L. Colliot-Thélène, Formes quadratiques sur les anneaux semi-locaux réguliers,in Colloque sur les formes quadratiques (Montpellier, 1977),Bull. Soc. Math. France, Mém.,59 (1979), 13–31.
[6] J.-L. Colliot-Thélène, R. Parimala etR. Sridharan, Un théorème de pureté locale,C. R. Acad. Sc. Paris,309, série I (1989), 857–862.
[7] J.-L. Colliot-Thélène etJ.-J. Sansuc, Fibrés quadratiques et composantes connexes réelles,Math. Ann.,244 (1979), 105–134. · Zbl 0418.14016 · doi:10.1007/BF01420486
[8] J.-L. Colliot-Thélène andJ.-J. Sansuc, Principal homogeneous spaces under flasque tori: Applications,Journal of Algebra,106 (1987), 148–205. · Zbl 0597.14014 · doi:10.1016/0021-8693(87)90026-3
[9] F. R. de Meyer, Projective modules over central separable algebras,Canad. J. Math.,21 (1969), 39–43. · Zbl 0167.30801 · doi:10.4153/CJM-1969-004-x
[10] M. Demazure etP. Gabriel,Groupes algébriques, Paris, Masson, 1970. · Zbl 0203.23401
[11] D. Ferrand etM. Raynaud, Fibres formelles d’un anneau local noethérien,Ann. Scient. Ec. Norm. Sup., 4e série,3 (1970), 295–311.
[12] A. Grothendieck, Eléments de géométrie algébrique, IV, 4e partie,Publ. Math. I.H.E.S.,32 (1967), 1–361.
[13] A. Grothendieck, Torsion homologique et sections rationnelles, inAnneaux de Chow et applications, Séminaire Chevalley, 2e année, Secrétariat mathématique, Paris, 1958.
[14] A. Grothendieck, Le groupe de Brauer II, inDix exposés sur la cohomologie des schémas, Amsterdam, North-Holland, 1968.
[15] A. Grothendieck, Le groupe de Brauer III, inDix exposés sur la cohomologie des schémas, Amsterdam, North-Holland, 1968.
[16] M.-A. Knus,Quadratic and Hermitian Forms over Rings, Grundlehren der mathematischen Wissenschaften,294, Springer-Verlag, 1991.
[17] M.-A. Knus etM. Ojanguren,Théorie de la descente et algèbres d’Azumaya, L.N.M.,389, Springer-Verlag, 1974.
[18] В. И. Копейко, Квадратичные пространства н алгебры кватернионов, эап. иауч. семинаров Ленингр. отд. Мат. ин-та АН СССР 1978, т. 75, 110–120. · Zbl 1154.68045
[19] T. Y. Lam,Serre’s Conjecture, L.N.M.,635, Springer-Verlag, 1978.
[20] H. Lindel, On the Bass-Quillen conjecture concerning projective modules over polynomial rings,Inventiones math.,65 (1981), 319–323. · Zbl 0477.13006 · doi:10.1007/BF01389017
[21] А. С. Меркурьев, Группа SК2 для алгебр кватернионов, Изв. АН СССР. Сер. матем., t. 52 (1988), 310–335 (=Math. U.S.S.R. Izv.,32 (1989), 313–337). · Zbl 1241.68050
[22] J. S. Milne,Etale Cohomology, Princeton University Press, 1980.
[23] Ye. A. Nisnevich, Espaces homogènes principaux rationnellement triviaux et arithmétique des schémas en groupes réductifs sur les anneaux de Dedekind,C.R. Acad. Sc. Paris,299, série I (1984), 5–8.
[24] Ye. A. Nisnevich, Rationally trivial principal homogeneous spaces, purity and arithmetic of reductive group schemes over extensions of two-dimensional local regular rings,C.R. Acad. Sc. Paris,309, série I (1989), 651–655. · Zbl 0687.14039
[25] Ye. A. Nisnevich, The completely decomposed topology on schemes and associated descent spectral sequences in algebraic K-theory, inAlgebraic K-theory: Connections with Geometry and Topology, Lake Louise, 1987, ed.J. F. Jardine andV. P. Snaith, NATO ASI Series C,279 (1989), Kluwer Academic Publishers, 241–342.
[26] M. Ojanguren, Formes quadratiques sur les algèbres de polynômes,C.R. Acad. Sc. Paris, série A,287 (1978), 695–698. · Zbl 0396.13021
[27] M. Ojanguren, Quadratic forms over regular rings,Journal of the Indian Math. Soc.,44 (1980), 109–116. · Zbl 0621.10017
[28] M. Ojanguren, Unités représentées par des formes quadratiques ou par des normes réduites, inAlgebraic K-theory, Oberwolfach, 1980, t. II, L.N.M.,967 (K. Dennis, éd.), 291–299, Springer-Verlag, 1982.
[29] S. Parimala, Failure of a quadratic analogue of Serre’s conjecture,American J. of Math.,100 (1978) 913–924. · Zbl 0419.13004 · doi:10.2307/2373953
[30] D. Quillen, Higher algebraic K-theory: I, inAlgebraic K-Theory I, L.N.M.,341 (1973), 85–147 (= 1–63), Springer-Verlag.
[31] M. S. Raghunathan, Principal bundles on affine space, inC.P. Ramanujam–A Tribute, 187–206, Tata Institute of Fundamental Research,Studies in Mathematics,8, Springer-Verlag, 1978.
[32] M. S. Raghunathan, Principal bundles on affine space and bundles on the projective line,Math. Annalen,285 (1989), 309–332. · doi:10.1007/BF01443521
[33] M. S. Raghunathan andA. Ramanathan, Principal bundles on the affine line,Proc. Ind. Acad. Sc.,93 (1984), 137–145. · Zbl 0587.14007 · doi:10.1007/BF02840656
[34] M. Rost, Durch Normengruppen definierte birationale Invarianten,C.R. Acad. Sc. Paris,10, série I (1990), 189–192.
[35] J.-P. Serre, Espaces fibrés algébriques, inAnneaux de Chow et applications, Séminaire Chevalley, 2e année, Secrétariat mathématique, Paris, 1958.
[36] Théorie des Topos et Cohomologie étale des schémas, Séminaire de géométrie algébrique du Bois-Marie, 1963, dirigé parM. Artin, A. Grothendieck, J.-L. Verdier, L.N.M.,269 (t. 1),270 (t. 2),305 (t. 3), Springer-Verlag.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.