×

Local well-posedness and persistence properties for a model containing both Camassa-Holm and Novikov equation. (English) Zbl 1304.35220

Summary: This paper deals with the Cauchy problem for a generalized Camassa-Holm equation with high-order nonlinearities, \[ u_t - u_{xxt} + ku_x + au^m u_x = (n + 2)u^n u_x u_{xx} + u^{n+1} u_{xxx}, \] where \(k, a \in \mathbb R\) and \(m, n \in \mathbb Z^+\). This equation is a generalization of the famous equation of Camassa-Holm and the Novikov equation. The local well-posedness of strong solutions for this equation in Sobolev space \(H^s (\mathbb R)\) with \(s > \frac{3}{2}\) is obtained, and persistence properties of the strong solutions are studied. Furthermore, under appropriate hypotheses, the existence of its weak solutions in low order Sobolev space \(H^s (\mathbb R)\) with \(1 <s\leq \frac{3}{2}\) is established.

MSC:

35G25 Initial value problems for nonlinear higher-order PDEs
35D30 Weak solutions to PDEs

References:

[1] Camassa R, Holm D, Hyman J: A new integrable shallow water equation.Adv. Appl. Mech. 1994, 31:1-33. · Zbl 0808.76011
[2] Constantin A, Strauss WA: Stability of a class of solitary waves in compressible elastic rods.Phys. Lett. A 2000, 270:140-148. 10.1016/S0375-9601(00)00255-3 · Zbl 1115.74339 · doi:10.1016/S0375-9601(00)00255-3
[3] Fokas AS, Fuchssteiner B: Symplectic structures, their Bäcklund transformation and hereditary symmetries.Physica, D 1981, 4:47-66. 10.1016/0167-2789(81)90004-X · Zbl 1194.37114 · doi:10.1016/0167-2789(81)90004-X
[4] Lenells J: Conservation laws of the Camassa-Holm equation.J. Phys. A 2005, 38:869-880. 10.1088/0305-4470/38/4/007 · Zbl 1076.35100 · doi:10.1088/0305-4470/38/4/007
[5] Camassa R, Holm D: An integrable shallow water equation with peaked solitons.Phys. Rev. Lett. 1993, 71:1661-1664. 10.1103/PhysRevLett.71.1661 · Zbl 0972.35521 · doi:10.1103/PhysRevLett.71.1661
[6] Constantin A: On the scattering problem for the Camassa-Holm equation.Proc. R. Soc. Lond. 2001, 457:953-970. 10.1098/rspa.2000.0701 · Zbl 0999.35065 · doi:10.1098/rspa.2000.0701
[7] Boutet A, Monvel D, Shepelsky D: Riemann-Hilbert approach for the Camassa-Holm equation on the line.C. R. Math. Acad. Sci. Paris 2006, 343:627-632. 10.1016/j.crma.2006.10.014 · Zbl 1110.35056 · doi:10.1016/j.crma.2006.10.014
[8] Constantin A, Gerdjikov V, Ivanov R: Inverse scattering transform for the Camassa-Holm equation.Inverse Probl. 2006, 22:2197-2207. 10.1088/0266-5611/22/6/017 · Zbl 1105.37044 · doi:10.1088/0266-5611/22/6/017
[9] Qiao ZJ: The Camassa-Holm hierarchy,N-dimensional integrable systems, and algebro-geometric solution on a symplectic submanifold.Commun. Math. Phys. 2003, 239:309-341. 10.1007/s00220-003-0880-y · Zbl 1020.37046 · doi:10.1007/s00220-003-0880-y
[10] Constantin A, Strauss WA: Stability of peakons.Commun. Pure Appl. Math. 2000, 53:603-610. 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L · Zbl 1049.35149 · doi:10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
[11] Constantin A, Strauss WA: Stability of the Camassa-Holm solitons.J. Nonlinear Sci. 2002, 12:415-422. 10.1007/s00332-002-0517-x · Zbl 1022.35053 · doi:10.1007/s00332-002-0517-x
[12] Constantin A: The trajectories of particles in Stokes waves.Invent. Math. 2006, 166:523-535. 10.1007/s00222-006-0002-5 · Zbl 1108.76013 · doi:10.1007/s00222-006-0002-5
[13] Constantin A, Escher J: Analyticity of periodic traveling free surface water waves with vorticity.Ann. Math. 2011, 173:559-568. 10.4007/annals.2011.173.1.12 · Zbl 1228.35076 · doi:10.4007/annals.2011.173.1.12
[14] Toland JF: Stokes waves.Topol. Methods Nonlinear Anal. 1996, 7:1-48. · Zbl 0897.35067
[15] Beals R, Sattinger D, Szmigielski J: Acoustic scattering and the extended Korteweg-de Vries hierarchy.Adv. Math. 1998, 140:190-206. 10.1006/aima.1998.1768 · Zbl 0919.35118 · doi:10.1006/aima.1998.1768
[16] Qiao ZJ, Zhang GP: On peaked and smooth solitons for the Camassa-Holm equation.Europhys. Lett. 2006, 73:657-663. 10.1209/epl/i2005-10453-y · doi:10.1209/epl/i2005-10453-y
[17] Constantin A, Escher J: Global existence and blow-up for a shallow water equation.Ann. Sc. Norm. Super. Pisa, Cl. Sci. 1998, 26:303-328. · Zbl 0918.35005
[18] Li YA, Olver PJ: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation.J. Differ. Equ. 2000, 162:27-63. 10.1006/jdeq.1999.3683 · Zbl 0958.35119 · doi:10.1006/jdeq.1999.3683
[19] Rodriguez-Blanco G: On the Cauchy problem for the Camassa-Holm equation.Nonlinear Anal. 2001, 46:309-327. 10.1016/S0362-546X(01)00791-X · Zbl 0980.35150 · doi:10.1016/S0362-546X(01)00791-X
[20] Constantin A: Global existence of solutions and breaking waves for a shallow water equation: a geometric approach.Ann. Inst. Fourier 2000, 50:321-362. 10.5802/aif.1757 · Zbl 0944.35062 · doi:10.5802/aif.1757
[21] Constantin A, Escher J: Wave breaking for nonlinear nonlocal shallow water equations.Acta Math. 1998, 181:229-243. 10.1007/BF02392586 · Zbl 0923.76025 · doi:10.1007/BF02392586
[22] Bressan A, Constantin A: Global conservative solutions of the Camassa-Holm equation.Arch. Ration. Mech. Anal. 2007, 183:215-239. 10.1007/s00205-006-0010-z · Zbl 1105.76013 · doi:10.1007/s00205-006-0010-z
[23] Constantin A, Escher J: Global weak solutions for a shallow water equation.Indiana Univ. Math. J. 1998, 47:1527-1545. · Zbl 0930.35133 · doi:10.1512/iumj.1998.47.1466
[24] Constantin A, Molinet L: Global weak solutions for a shallow water equation.Commun. Math. Phys. 2000, 211:45-61. 10.1007/s002200050801 · Zbl 1002.35101 · doi:10.1007/s002200050801
[25] Xin ZP, Zhang P: On the weak solutions to a shallow water equation.Commun. Pure Appl. Math. 2000, 53:1411-1433. 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5 · Zbl 1048.35092 · doi:10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5
[26] Wazwaz A: Solitary wave solutions for modified forms of Degasperis-Procesi and Camassa-Holm equations.Phys. Lett. A 2006, 352:500-504. 10.1016/j.physleta.2005.12.036 · Zbl 1187.35199 · doi:10.1016/j.physleta.2005.12.036
[27] Wazwaz A: New solitary wave solutions to the modified forms of Degasperis-Procesi and Camassa-Holm equations.Appl. Math. Comput. 2007, 186:130-141. 10.1016/j.amc.2006.07.092 · Zbl 1114.65124 · doi:10.1016/j.amc.2006.07.092
[28] Liu ZR, Ouyang ZY: A note on solitary waves for modified forms of Camassa-Holm and Degasperis-Procesi equations.Phys. Lett. A 2007, 366:377-381. 10.1016/j.physleta.2007.01.074 · Zbl 1203.35234 · doi:10.1016/j.physleta.2007.01.074
[29] Liu ZR, Qian ZF: Peakons and their bifurcation in a generalized Camassa-Holm equation.Int. J. Bifurc. Chaos 2001, 11:781-792. 10.1142/S0218127401002420 · Zbl 1090.37554 · doi:10.1142/S0218127401002420
[30] Tian LX, Song XY: New peaked solitary wave solutions of the generalized Camassa-Holm equation.Chaos Solitons Fractals 2004, 21:621-637. · Zbl 1068.35123 · doi:10.1016/S0960-0779(03)00192-9
[31] Liu ZR, Guo BL: Periodic blow-up solutions and their limit forms for the generalized Camassa-Holm equation.Prog. Nat. Sci. 2008, 18:259-266. 10.1016/j.pnsc.2007.11.004 · doi:10.1016/j.pnsc.2007.11.004
[32] Shen JW, Xu W: Bifurcations of smooth and non-smooth travelling wave solutions in the generalized Camassa-Holm equation.Chaos Solitons Fractals 2005, 26:1149-1162. 10.1016/j.chaos.2005.02.021 · Zbl 1072.35579 · doi:10.1016/j.chaos.2005.02.021
[33] Novikov, YS, Generalizations of the Camassa-Holm equation, No. 42 (2009) · Zbl 1181.37100
[34] Hone, ANW; Wang, JP, Integrable peakon equations with cubic nonlinearity, No. 41 (2008) · Zbl 1153.35075
[35] Constantin A: The trajectories of particles in Stokes waves.Invent. Math. 2006, 166:523-535. 10.1007/s00222-006-0002-5 · Zbl 1108.76013 · doi:10.1007/s00222-006-0002-5
[36] Constantin A, Escher J: Particle trajectories in solitary water waves.Bull. Am. Math. Soc. 2007, 44:423-431. 10.1090/S0273-0979-07-01159-7 · Zbl 1126.76012 · doi:10.1090/S0273-0979-07-01159-7
[37] Hone ANW, Lundmark H, Szmigielski J: Explicit multipeakon solutions of Novikov’s cubically nonlinear integrable Camassa-Holm equation.Dyn. Partial Differ. Equ. 2009, 6:253-289. 10.4310/DPDE.2009.v6.n3.a3 · Zbl 1179.37092 · doi:10.4310/DPDE.2009.v6.n3.a3
[38] Ni LD, Zhou Y: Well-posedness and persistence properties for the Novikov equation.J. Differ. Equ. 2011, 250:3002-3201. 10.1016/j.jde.2011.01.030 · Zbl 1215.37051 · doi:10.1016/j.jde.2011.01.030
[39] Yan W, Li Y, Zhang Y: The Cauchy problem for the integrable Novikov equation.J. Differ. Equ. 2012, 253:298-318. 10.1016/j.jde.2012.03.015 · Zbl 1248.35051 · doi:10.1016/j.jde.2012.03.015
[40] Grayshan K: Peakon solutions of the Novikov equation and properties of the data-to-solution map.J. Math. Anal. Appl. 2013, 397:515-521. 10.1016/j.jmaa.2012.08.006 · Zbl 1256.35109 · doi:10.1016/j.jmaa.2012.08.006
[41] Himonas A, Holliman C: The Cauchy problem for the Novikov equation.Nonlinearity 2012, 25:449-479. 10.1088/0951-7715/25/2/449 · Zbl 1232.35145 · doi:10.1088/0951-7715/25/2/449
[42] Jiang ZH, Ni LD: Blow-up phenomena for the integrable Novikov equation.J. Math. Anal. Appl. 2012, 385:551-558. 10.1016/j.jmaa.2011.06.067 · Zbl 1228.35066 · doi:10.1016/j.jmaa.2011.06.067
[43] Wu, SY; Yin, ZY, Global weak solutions for the Novikov equation, No. 44 (2011) · Zbl 1210.35217
[44] Zhao L, Zhou S: Symbolic analysis and exact travelling wave solutions to a new modified Novikov equation.Appl. Math. Comput. 2010, 217:590-598. 10.1016/j.amc.2010.05.093 · Zbl 1200.35279 · doi:10.1016/j.amc.2010.05.093
[45] Fokas AS: The Korteweg-de Vries equation and beyond.Acta Appl. Math. 1995, 39:295-305. 10.1007/BF00994638 · Zbl 0842.58045 · doi:10.1007/BF00994638
[46] Fuchssteiner B: Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation.Physica, D 1996, 95:229-243. 10.1016/0167-2789(96)00048-6 · Zbl 0900.35345 · doi:10.1016/0167-2789(96)00048-6
[47] Olver PJ, Rosenau P: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support.Phys. Rev. E 1996, 53:1900-1906. 10.1103/PhysRevE.53.1900 · doi:10.1103/PhysRevE.53.1900
[48] Qiao, ZJ, A new integrable equation with cuspons and [InlineEquation not available: see fulltext.]-shape-peaks solitons, No. 47 (2006)
[49] Qiao, ZJ, New integrable hierarchy, its parametric solutions, cuspons, one-peak solitons, and [InlineEquation not available: see fulltext.]-shape peak solitons, No. 48 (2007)
[50] Ivanov, RI; Lyons, T., Dark solitons of the Qiao’s hierarchy, No. 53 (2012) · Zbl 1396.35053
[51] Gui GL, Liu Y, Olver PL, Qu CZ: Wave-breaking and peakons for a modified Camassa-Holm equation.Commun. Math. Phys. 2012, 319:731-759. · Zbl 1263.35186 · doi:10.1007/s00220-012-1566-0
[52] Fu Y, Gui GL, Liu Y, Qu CZ: On the Cauchy problem for the integrable modified Camassa-Holm equation with cubic nonlinearity.J. Differ. Equ. 2013, 255:1905-1938. 10.1016/j.jde.2013.05.024 · Zbl 1308.35026 · doi:10.1016/j.jde.2013.05.024
[53] Schäfer-Wayne T: Propagation of ultra-short optical pulses in cubic nonlinear media.Physica, D 2004, 196:90-105. 10.1016/j.physd.2004.04.007 · Zbl 1054.81554 · doi:10.1016/j.physd.2004.04.007
[54] Lai SY, Wu YH: The local well-posedness and existence of weak solutions for a generalized Camassa-Holm equation.J. Differ. Equ. 2010, 248:2038-2063. 10.1016/j.jde.2010.01.008 · Zbl 1187.35179 · doi:10.1016/j.jde.2010.01.008
[55] Hakkaev S, Kirchev K: Local well-posedness and orbital stability of solitary wave solutions for the generalized Camassa-Holm equation.Commun. Partial Differ. Equ. 2005, 30:761-781. 10.1081/PDE-200059284 · Zbl 1076.35098 · doi:10.1081/PDE-200059284
[56] Himonas AA, Misiolek G, Ponce G, Zhou Y: Persistence properties and unique continuation of solutions of the Camassa-Holm equation.Commun. Math. Phys. 2007, 271:511-522. 10.1007/s00220-006-0172-4 · Zbl 1142.35078 · doi:10.1007/s00220-006-0172-4
[57] Ni LD, Zhou Y: A new asymptotic behavior of solutions to the Camassa-Holm equation.Proc. Am. Math. Soc. 2012, 140:607-614. 10.1090/S0002-9939-2011-10922-5 · Zbl 1259.37046 · doi:10.1090/S0002-9939-2011-10922-5
[58] Kato, T., Quasi-linear equations of evolution with applications to partial differential equations, 25-70 (1975), Berlin · Zbl 0315.35077 · doi:10.1007/BFb0067080
[59] Mu CL, Zhou SM, Zeng R: Well-posedness and blow-up phenomena for a higher order shallow water equation.J. Differ. Equ. 2011, 251:3488-3499. 10.1016/j.jde.2011.08.020 · Zbl 1252.35092 · doi:10.1016/j.jde.2011.08.020
[60] Bona J, Smith R: The initial value problem for the Korteweg-de Vries equation.Philos. Trans. R. Soc. Lond. Ser. A 1975, 278:555-601. 10.1098/rsta.1975.0035 · Zbl 0306.35027 · doi:10.1098/rsta.1975.0035
[61] Lai SY, Wu YH: A model containing both the Camassa-Holm and Degasperis-Procesi equations.J. Math. Anal. Appl. 2011, 374:458-469. 10.1016/j.jmaa.2010.09.012 · Zbl 1202.35231 · doi:10.1016/j.jmaa.2010.09.012
[62] Walter W: Differential and Integral Inequalities. Springer, New York; 1970. · Zbl 0252.35005 · doi:10.1007/978-3-642-86405-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.