×

A new asymptotic behavior of solutions to the Camassa-Holm equation. (English) Zbl 1259.37046

The author considered the Camassa-Holm equation which models the wave motion in shallow water. This shallow water equation appears in the context of hereditary symmetries studied by Fuchssteiner and Fokas as a bi-Hamiltonian generalization of KdV. The authors study an algebraic decay rate of the strong solution to the Camassa-Holm equation in the \(L^{\infty}\)-space. It is proved that the solution decays algebraically with the same exponent as that of the initial data.

MSC:

37L05 General theory of infinite-dimensional dissipative dynamical systems, nonlinear semigroups, evolution equations
35Q53 KdV equations (Korteweg-de Vries equations)
26A12 Rate of growth of functions, orders of infinity, slowly varying functions
Full Text: DOI

References:

[1] Alberto Bressan and Adrian Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal. 183 (2007), no. 2, 215 – 239. · Zbl 1105.76013 · doi:10.1007/s00205-006-0010-z
[2] Adrian Constantin, Finite propagation speed for the Camassa-Holm equation, J. Math. Phys. 46 (2005), no. 2, 023506, 4. · Zbl 1076.35109 · doi:10.1063/1.1845603
[3] Adrian Constantin and Joachim Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math. 51 (1998), no. 5, 475 – 504. , https://doi.org/10.1002/(SICI)1097-0312(199805)51:53.0.CO;2-5 · Zbl 0934.35153
[4] Roberto Camassa and Darryl D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993), no. 11, 1661 – 1664. · Zbl 0972.35521 · doi:10.1103/PhysRevLett.71.1661
[5] Raphaël Danchin, A few remarks on the Camassa-Holm equation, Differential Integral Equations 14 (2001), no. 8, 953 – 988. · Zbl 1161.35329
[6] B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D 4 (1981/82), no. 1, 47 – 66. · Zbl 1194.37114 · doi:10.1016/0167-2789(81)90004-X
[7] H. P. McKean, Breakdown of a shallow water equation, Asian J. Math. 2 (1998), no. 4, 867 – 874. Mikio Sato: a great Japanese mathematician of the twentieth century. · Zbl 0959.35140 · doi:10.4310/AJM.1998.v2.n4.a10
[8] A. Alexandrou Himonas, Gerard Misiołek, Gustavo Ponce, and Yong Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation, Comm. Math. Phys. 271 (2007), no. 2, 511 – 522. · Zbl 1142.35078 · doi:10.1007/s00220-006-0172-4
[9] Z. Jiang, L. Ni and Y. Zhou, Wave breaking for the Camassa-Holm equation. Preprint (2010). · Zbl 1247.35104
[10] L. Ni and Y. Zhou, Wave breaking and propagation speed for a class of nonlocal dispersive \( \theta\)-equations. Nonlinear Anal.: Real World Appl. 12 (2011), no. 1, 592-600. · Zbl 1206.35221
[11] Guillermo Rodríguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal. 46 (2001), no. 3, Ser. A: Theory Methods, 309 – 327. · Zbl 0980.35150 · doi:10.1016/S0362-546X(01)00791-X
[12] Zhouping Xin and Ping Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math. 53 (2000), no. 11, 1411 – 1433. , https://doi.org/10.1002/1097-0312(200011)53:113.3.CO;2-X · Zbl 1048.35092
[13] Yong Zhou, Wave breaking for a shallow water equation, Nonlinear Anal. 57 (2004), no. 1, 137 – 152. · Zbl 1106.35070 · doi:10.1016/j.na.2004.02.004
[14] Yong Zhou, Wave breaking for a periodic shallow water equation, J. Math. Anal. Appl. 290 (2004), no. 2, 591 – 604. · Zbl 1042.35060 · doi:10.1016/j.jmaa.2003.10.017
[15] Yong Zhou, On solutions to the Holm-Staley \?-family of equations, Nonlinearity 23 (2010), no. 2, 369 – 381. · Zbl 1189.37083 · doi:10.1088/0951-7715/23/2/008
[16] Yong Zhou and Zhengguang Guo, Blow up and propagation speed of solutions to the DGH equation, Discrete Contin. Dyn. Syst. Ser. B 12 (2009), no. 3, 657 – 670. · Zbl 1180.35473 · doi:10.3934/dcdsb.2009.12.657
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.