×

Coverage properties of confidence intervals for generalized additive model components. (English) Zbl 1246.62058

Summary: We study the coverage properties of Bayesian confidence intervals for smooth component functions of generalized additive models (GAMs) represented using any penalized regression spline approach. The intervals are the usual generalization of the intervals first proposed by Wahba and Silverman in 1983 and 1985, respectively, to the GAM component context. We present simulation evidence showing that these intervals have close to nominal ‘across-the-function’ frequentist coverage probabilities, except when the truth is close to a straight line/plane function. We extend the argument introduced by D. Nychka [J. Am. Stat. Assoc. 83, 1134–1143 (1988)] for univariate smoothing splines to explain these results. The theoretical argument suggests that close to nominal coverage probabilities can be achieved, provided that heavy oversmoothing is avoided, so that the bias is not too large a proportion of the sampling variability. The theoretical results allow us to derive alternative intervals from a purely frequentist point of view, and to explain the impact that the neglect of smoothing parameter variability has on confidence interval performance. They also suggest switching the target of inference for component-wise intervals away from smooth components in the space of the GAM identifiability constraints.

MSC:

62F15 Bayesian inference
62G15 Nonparametric tolerance and confidence regions
62F25 Parametric tolerance and confidence regions
65C60 Computational problems in statistics (MSC2010)

Software:

SemiPar; gss; gamair

References:

[1] Akaike, International symposium on information theory pp 267– (1973)
[2] Craven, Smoothing noisy data with spline functions, Numer. Math. 31 pp 377– (1979) · Zbl 0377.65007 · doi:10.1007/BF01404567
[3] Fahrmeir, Penalized structured additive regression for space-time data: a Bayesian perspective, Statist. Sinica 14 pp 731– (2004) · Zbl 1073.62025
[4] Fahrmeir, Bayesian inference for generalized additive mixed models based on Markov random field priors, J. Roy. Statist. Soc. C App 50 pp 201– (2001) · doi:10.1111/1467-9876.00229
[5] Gentle, Random number generation and Monte Carlo methods (2003) · Zbl 1028.65004
[6] Gu, Penalized likelihood regression - a Bayesian analysis, Statist. Sinica 2 pp 255– (1992) · Zbl 0822.62023
[7] Gu, Smoothing spline ANOVA models (2002) · Zbl 1051.62034 · doi:10.1007/978-1-4757-3683-0
[8] Gu, Smoothing spline ANOVA with component-wise Bayesian confidence intervals, J. Comp. Graph. Stat. 2 pp 97– (1993) · doi:10.2307/1390957
[9] Hall, Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability density, Ann. Statist. 20 pp 675– (1992) · Zbl 0748.62028 · doi:10.1214/aos/1176348651
[10] Härdle, Bootstrapping in nonparametric regression: local adaptive smoothing and confidence bands, J. Amer. Stat. Assoc. 83 pp 102– (1988) · Zbl 0644.62047 · doi:10.2307/2288926
[11] Härdle, Bootstrap inference in semiparametric generalized additive models, Economet. Theor. 20 pp 265– (2004) · Zbl 1072.62034 · doi:10.1017/S026646660420202X
[12] Härdle, Bootstrap simultaneous error bands for nonparametric regression, Ann. Statist. 19 pp 778– (1991) · Zbl 0725.62037 · doi:10.1214/aos/1176348120
[13] Hastie, Generalized additive models (1990) · Zbl 0747.62061
[14] Kauermann, Local likelihood estimation in generalized additive models, Scand. J. Statist. 30 pp 317– (2003) · Zbl 1053.62084 · doi:10.1111/1467-9469.00333
[15] McCullagh, Generalized linear models (1989) · Zbl 0588.62104 · doi:10.1007/978-1-4899-3242-6
[16] Nychka, Bayesian confidence intervals for smoothing splines, J. Amer. Statist. Assoc. 83 pp 1134– (1988) · doi:10.2307/2290146
[17] Ruppert, Semiparametric regression (2003) · Zbl 1038.62042 · doi:10.1017/CBO9780511755453
[18] Silverman, Some aspects of the spline smoothing approach to non-parametric regression curve fitting, J. Roy. Statist. Soc. B Met 47 pp 1– (1985) · Zbl 0606.62038
[19] Wahba, Bayesian ’confidence intervals’ for the cross-validated smoothing spline, J. Roy. Statist. Soc. B Met 45 pp 133– (1983) · Zbl 0538.65006
[20] Wang, Bootstrap confidence intervals for smoothing splines and their comparison to bayesian confidence intervals, J. Statist. Comput. Sim. 51 pp 263– (1995) · Zbl 0842.62036 · doi:10.1080/00949659508811637
[21] Wood, Modelling and smoothing parameter estimation with multiple quadratic penalties, J. Roy. Statist. Soc. B Met 62 pp 413– (2000) · doi:10.1111/1467-9868.00240
[22] Wood, Thin plate regression splines, J. Roy. Statist. Soc. B Met 65 pp 95– (2003) · Zbl 1063.62059 · doi:10.1111/1467-9868.00374
[23] Wood, Stable and efficient multiple smoothing parameter estimation for generalized additive models, J. Amer. Stat. Assoc. 99 pp 673– (2004) · Zbl 1117.62445 · doi:10.1198/016214504000000980
[24] Wood, Generalized additive models: an introduction with R (2006a) · Zbl 1087.62082
[25] Wood, On confidence intervals for generalized additive models based on penalized regression splines, Aust. N. Z. J. Statist. 48 pp 445– (2006b) · Zbl 1110.62042 · doi:10.1111/j.1467-842X.2006.00450.x
[26] Wood, Fast stable direct fitting and smoothness selection for generalized additive models, J. Roy. Statist. Soc. B Met 70 pp 495– (2008) · Zbl 05563356 · doi:10.1111/j.1467-9868.2007.00646.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.