×

Fast stable direct fitting and smoothness selection for generalized additive models. (English) Zbl 05563356

Summary: Existing computationally efficient methods for penalized likelihood generalized additive model fitting employ iterative smoothness selection on working linear models (or working mixed models). Such schemes fail to converge for a non-negligible proportion of models, with failure being particularly frequent in the presence of concurvity. If smoothness selection is performed by optimizing ’whole model’ criteria these problems disappear, but until now attempts to do this have employed finite-difference-based optimization schemes which are computationally inefficient and can suffer from false convergence. The paper develops the first computationally efficient method for direct generalized additive model smoothness selection. It is highly stable, but by careful structuring achieves a computational efficiency that leads, in simulations, to lower mean computation times than the schemes that are based on working model smoothness selection. The method also offers a reliable way of fitting generalized additive mixed models.

MSC:

62-XX Statistics

References:

[1] Akaike H., Proc. 2nd Int. Symp Information Theory pp 267– (1973)
[2] Anderson E., LAPACK Users’ Guide (1999) · Zbl 0934.65030 · doi:10.1137/1.9780898719604
[3] DOI: 10.1139/cjfas-54-12-2727 · doi:10.1139/cjfas-54-12-2727
[4] Bowman A. W., Applied Smoothing Techniques for Data Analysis (1997) · Zbl 0889.62027
[5] DOI: 10.2307/2290687 · Zbl 0775.62195 · doi:10.2307/2290687
[6] Brezger A., BayesX 1.5.0. University of Munich (2007)
[7] DOI: 10.1016/j.csda.2004.10.011 · Zbl 1431.62308 · doi:10.1016/j.csda.2004.10.011
[8] DOI: 10.1137/0713027 · Zbl 0337.65027 · doi:10.1137/0713027
[9] DOI: 10.1007/BF01404567 · Zbl 0377.65007 · doi:10.1007/BF01404567
[10] Dennis J. E., Numerical Methods for Unconstrained Optimization and Nonlinear Equations (1983) · Zbl 0579.65058
[11] Dongarra J. J., LINPACK Users Guide (1978)
[12] DOI: 10.1198/106186002321018777 · doi:10.1198/106186002321018777
[13] Fahrmeir L., Statist. Sin. 14 pp 731– (2004)
[14] DOI: 10.1111/1467-9876.00229 · doi:10.1111/1467-9876.00229
[15] DOI: 10.1136/jech.2004.026740 · doi:10.1136/jech.2004.026740
[16] Gill P. E., Practical Optimization (1981) · Zbl 0503.90062
[17] Golub G. H., Matrix Computations (1996) · Zbl 0865.65009
[18] Green P. J., Nonparametric Regression and Generalized Linear Models (1994) · Zbl 0832.62032 · doi:10.1007/978-1-4899-4473-3
[19] DOI: 10.2307/1390840 · doi:10.2307/1390840
[20] Gu C., Smoothing Spline ANOVA Models (2002) · Zbl 1051.62034 · doi:10.1007/978-1-4757-3683-0
[21] Gu C, General smoothing splines (2004)
[22] DOI: 10.1137/0912021 · Zbl 0727.65009 · doi:10.1137/0912021
[23] DOI: 10.1198/106186001317114992 · doi:10.1198/106186001317114992
[24] DOI: 10.1214/ss/1177013604 · doi:10.1214/ss/1177013604
[25] Hastie T., Generalized Additive Models (1990) · Zbl 0747.62061
[26] Hastie T., J. R. Statist. Soc. B 55 pp 757– (1993)
[27] DOI: 10.1046/j.1369-7412.2003.05316.x · Zbl 1062.62067 · doi:10.1046/j.1369-7412.2003.05316.x
[28] DOI: 10.1198/1061860043010 · doi:10.1198/1061860043010
[29] DOI: 10.1111/1467-9868.00183 · Zbl 0915.62062 · doi:10.1111/1467-9868.00183
[30] DOI: 10.2307/1267380 · Zbl 0269.62061 · doi:10.2307/1267380
[31] DOI: 10.1214/009053605000000101 · Zbl 1072.62025 · doi:10.1214/009053605000000101
[32] DOI: 10.1016/S0167-9473(98)00033-4 · Zbl 1042.62580 · doi:10.1016/S0167-9473(98)00033-4
[33] McCullagh P., Generalized Linear Models (1989) · Zbl 0744.62098 · doi:10.1007/978-1-4899-3242-6
[34] DOI: 10.2307/2344614 · doi:10.2307/2344614
[35] DOI: 10.1214/ss/1177013525 · Zbl 0625.62110 · doi:10.1214/ss/1177013525
[36] DOI: 10.2307/2287973 · doi:10.2307/2287973
[37] Parker R. L., J. R. Statist. Soc. B 47 pp 40– (1985)
[38] Pinheiro J. C., Mixed-effects Models in S and S-PLUS (2000) · Zbl 0953.62065 · doi:10.1007/978-1-4419-0318-1
[39] Ramsay T., Environ. Hlth Perspect. 111 pp 1283– (2003) · doi:10.1289/ehp.6047
[40] R Development Core Team, R 2.4.0: a Language and Environment for Statistical Computing (2006)
[41] Ruppert D., Semiparametric Regression (2003) · Zbl 1038.62042 · doi:10.1017/CBO9780511755453
[42] DOI: 10.1016/j.csda.2006.03.005 · Zbl 1157.65317 · doi:10.1016/j.csda.2006.03.005
[43] Stone M., J. R. Statist. Soc. B 39 pp 44– (1977)
[44] Wahba G., Approximation Theory III (1980) · Zbl 0485.41012
[45] Wahba G., Spline Models for Observational Data (1990) · Zbl 0813.62001 · doi:10.1137/1.9781611970128
[46] Watkins D. S., Fundamentals of Matrix Computations (1991) · Zbl 0746.65022
[47] DOI: 10.1111/1467-9868.00240 · doi:10.1111/1467-9868.00240
[48] DOI: 10.1111/1467-9868.00374 · Zbl 1063.62059 · doi:10.1111/1467-9868.00374
[49] DOI: 10.1198/016214504000000980 · Zbl 1117.62445 · doi:10.1198/016214504000000980
[50] Wood S. N., Generalized Additive Models: an Introduction with R (2006) · Zbl 1087.62082
[51] Xiang D., Statist. Sin. 6 pp 675– (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.