×

Implicit-explicit predictor-corrector schemes for nonlinear parabolic differential equations. (English) Zbl 1219.65098

Summary: A family of predictor-corrector (PC) schemes are developed for the numerical solution of nonlinear parabolic differential equations. Iterative processes are avoided by use of the implicit-explicit (IMEX) methods. Moreover, compared to the predictor schemes, the proposed methods usually have superior accuracy and stability properties. Some confirmation of these are illustrated by using the schemes on the well-known Fisher’s equation.

MSC:

65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs

Software:

RKC
Full Text: DOI

References:

[1] Akrivis, G.; Crouzeix, M.; Makridakis, C., Implicit-explicit multistep finite element methods for nonlinear parabolic problems, Math. Comput., 67, 457-477 (1998) · Zbl 0896.65066
[2] Akrivis, G.; Crouzeix, M.; Makridakis, C., Implicit-explicit multistep methods for quasilinear parabolic problems, Numer. Math., 82, 521-541 (1999) · Zbl 0936.65118
[3] Akrivis, G.; Karakatsani, F., Modified implicit-explicit BDF methods for nonlinear parabolic equations, Numer. Math., 43, 467-483 (2003) · Zbl 1045.65080
[4] özis, T.; Köroğlu, C., A novel approach for solving the Fisher equation using exp-function methods, Phys. Lett. A., 372, 3836-3840 (2008) · Zbl 1220.83011
[5] Qiu, Y.; Sloan, D. M., Numerical solution of Fisher’s equation using a moving mesh method, J. Comput. Phys., 146, 726-746 (1998) · Zbl 0927.65108
[6] Sommeijer, B. P.; Verwer, J. G., On stabilized integration for time-dependent PDEs, J. Comput. Phys., 224, 3-16 (2007) · Zbl 1119.65382
[7] Usman, A.; Hall, G., Equilibrium states for predictor-corrector methods, J. Comput. Appl. Math., 89, 275-308 (1998) · Zbl 0905.65088
[8] Vapah, J., Stability restrictions on second-order, three level finite difference schemes for parabolic equations, SIAM J. Numer. Anal., 17, 300-309 (1980) · Zbl 0426.65048
[9] Verwer, J. G.; Sommeijer, B. P., An implicit-explicit Runge-Kutta-Chebyshev scheme for diffusion-reaction equations, SIAM J. Sci. Comput., 25, 1824-1835 (2004) · Zbl 1061.65090
[10] Wang, X. Y., Exact and explicit solitary wave solutions for the generalized Fisher equation, Phys. Lett. A., 131, 277-289 (1988)
[11] Wazwaz, A. M., Analytic study on Burgers, Fisher, Huxley equations and combined forms of these equations, Appl. Math. Comput., 195, 254-261 (2008)
[12] Yu, S.; Zhao, S.; Wei, G. W., Local spectral time splitting method for first- and second-order partial differential equations, J. Comput. Phys., 206, 727-780 (2005) · Zbl 1075.65130
[13] Dekker, K.; Verwer, J. G., Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations (1984), North-Holland: North-Holland Amsterdam, Netherlands · Zbl 0571.65057
[14] ElAzab, M. S., An approximation scheme for a nonlinear diffusion Fisher’s equation, Appl. Math. Comput., 186, 579-588 (2007) · Zbl 1121.65101
[15] Hairer, E.; Nørseltt, S. P.; Wanner, G., Solving Ordinary Differential Equations I (1987), Springer: Springer Berlin · Zbl 0638.65058
[16] Verwer, J. G.; Sommeijer, B. P.; Hundsdorfer, W., RKC time-stepping for advection-diffusion-reaction problems, J. Comput. Phys., 201, 61-79 (2004) · Zbl 1059.65085
[17] Jacques, I. B., Predictor-corrector methods for parabolic partial differential equations, Int. J. Num. Meth. Eng., 19, 451-465 (1983) · Zbl 0521.65083
[18] Voss, D. A.; Casper, M. J., Efficient split linear multistep methods for stiff ODEs, SIAM J. Sci. Star. Comput., 10, 990-999 (1989) · Zbl 0676.65081
[19] Voss, D. A.; Khaliq, A. Q.M., A Linearly implicit predictor-corrector methods for reaction-diffusion equations, Comput. Math. Appl., 38, 207-216 (1999) · Zbl 0973.65080
[20] Celnik, M.; Patterson, R.; Kraft, M.; Wagner, W., A predictor-corrector algorithm for the coupling of stiff ODEs to a particle population balance, J. Comput. Phys., 228, 2758-2769 (2009) · Zbl 1282.65083
[21] Ascher, U. M.; Ruuth, S. J.; Wetton, B., Implicit-explicit methods for time dependent partial differential equations, SIMA J. Numer. Anal., 32, 797-823 (1995) · Zbl 0841.65081
[22] Frank, J.; Hundsdorfer, W.; Verwer, J. G., On the stability of implicit-explicit linear multistep methods, Appl. Numer. Math., 25, 193-205 (1997) · Zbl 0887.65094
[23] Lambert, J. D., Computational Methods in Ordinary Differential Equations (1974), John Wiley: John Wiley London · Zbl 0327.65056
[24] Marden, ., Geometry of Polynomials (1966), Amer. Math. Soc.: Amer. Math. Soc. Provience, RI · Zbl 0162.37101
[25] Miller, J. J.H., On the location of zeros of certain classes of polynomials with applications to numerical analysis, J. Inst. Math. Appl., 8, 197-406 (1971) · Zbl 0232.65070
[26] Jiang, E.; Gao, K.; Wu, J., Linear Algebra (1978), Eduction Press of People: Eduction Press of People Beijing
[27] Wu, X., Two-step Runge-Kutta methods of order over five with reduced function evaluations, Appl. Math. Comput., 155, 779-811 (2004) · Zbl 1061.65069
[28] Danilov, V. G.; Maslov, V. P.; Volosov, K. A., Mathematical Modelling of Heat and Mass Transfer Processes (1995), Kluwer: Kluwer Dordrecht · Zbl 0839.35001
[29] Golbabai, A.; Javidi, M., A spectral domain decomposition approach for the generalized Burger’s-Fisher equation, Chaos, Solitons Fract., 39, 385-392 (2009) · Zbl 1197.65149
[30] Li, D.; Zhang, C., Split Newton iterative algorithm and its application, Appl. Math. Comput., 217, 2260-2265 (2010) · Zbl 1202.65066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.