×

An approximation scheme for a nonlinear diffusion Fisher’s equation. (English) Zbl 1121.65101

The author considers the problem
\[ \begin{aligned}\partial_t u-\nabla (A(x,t)\nabla u)=f(x,t,u)\text{ in }Q=\Omega \times (0; T),\;u=0\text{ on }\Gamma_D \times (0; T),\tag{1}\\ -(A(x,t)\nabla u)v =g(t,x,u)\text{ on }\Gamma_N \times (0; T),\;u(x,0)=u_0(x)\end{aligned} \] in \(\Omega\). Here \(\Omega \subset \mathbb R^N\;(N\geq 1)\) is a bounded domain with Lipschitz continuous boundary \(\partial \Omega = \overline{\Gamma}_D \cup \overline{\Gamma}_N\), \(\Gamma_D \cap \Gamma_N=\emptyset\), \(v\) is the outward normal to \(\Gamma_N\), \(A(x,t)\) is symmetric, Lipschitz continuous in \(t\) and uniformly positive definite matrix in \(Q\), \(f:\;\Omega \times (0; T)\times \mathbb R \to \mathbb R\) and \(g:\;\Gamma_N\times (0;T) \times \mathbb R \to \mathbb R\) are Lipschitz continuous. For problem (1) the full discretization scheme with Rothe-wavelet approximation is constructed. The convergence of the approximate solution to the precise solution of the initial problem (1) is proved and the full error analysis is performed. In the end of the paper the author illustrates this numerical technique by a numerical experiment for the 1-D Fisher diffusion problem.

MSC:

65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35K55 Nonlinear parabolic equations
65T60 Numerical methods for wavelets
Full Text: DOI

References:

[1] Amaratunga, K.; Williams, J. R.; Qian, S.; Weiss, J., Wavelet-Galerkin solutions for one dimensional partial differential equations, Int. J. Num. Meth. Eng., 37, 2703-2716 (1994) · Zbl 0813.65106
[2] Daubechies, I., Orthonormal basis of compactly supported wavelets, Comm. Pure Appl. Math., 41, 909-996 (1988) · Zbl 0644.42026
[3] Daubechies, I., Ten Lectures on Wavelets (1992), SIAM: SIAM Philadelphia · Zbl 0776.42018
[4] Debnath, L., Nonlinear Partial Differential Equations for Scientists and Engineers (1997), Birkhauser: Birkhauser Boston · Zbl 0892.35001
[5] El-Azab, M. S., On the solution of nonlinear initial-boundary value problems by the characteristic method, Sci. Bull. Fac. Eng. Ain Shams Univ., 36, 3, 479-491 (2001)
[6] El-Azab, M. S., Rothe-wavelet solution for nonlinear diffusion-reaction equations, Sci. Bull. Fac. Eng. Ain Shams Univ., 40, 1, 1085-1098 (2005)
[7] Fisher, R. A., Ann. Eugen., 7, 355 (1936)
[8] S. Hamid, T. Kolev, Q.T. Le Gia, Wuxiang Wu, Numerical Solution of Partial Differential Equation Using Wavelet Approximation Space, Math 667 Project, June 30, 2000.; S. Hamid, T. Kolev, Q.T. Le Gia, Wuxiang Wu, Numerical Solution of Partial Differential Equation Using Wavelet Approximation Space, Math 667 Project, June 30, 2000.
[9] Ho, S. L.; Yang, S. Y., Wavelet-Galerkin method for solving parabolic equations in finite domains, Finite Elem. Anal. Des., 37, 1023-1037 (2001) · Zbl 0987.65094
[10] W. Jäger, J. Kačur, Approximation of Porous Medium Type Systems by Nondegenerate Elliptic Systems, Preprint No. 582, Universität Heidelberg, 1990.; W. Jäger, J. Kačur, Approximation of Porous Medium Type Systems by Nondegenerate Elliptic Systems, Preprint No. 582, Universität Heidelberg, 1990.
[11] Jianhua, S.; Xuming, Y.; Biquan, Y.; Yuantong, S., Wavelet-Galerkin solutions for differential equations, Wuhan Univ. J. Nat. Sci., 3, 4, 403-406 (1998) · Zbl 0931.65082
[12] J. Kačur, Solution to Strongly Nonlinear Parabolic Problems by a Linear Approximation Scheme, Mathematics Preprint No. M1-96, Comenius University, Faculty of Mathematics and Physics, 1996.; J. Kačur, Solution to Strongly Nonlinear Parabolic Problems by a Linear Approximation Scheme, Mathematics Preprint No. M1-96, Comenius University, Faculty of Mathematics and Physics, 1996.
[13] Kufner, A.; John, O.; Fučik, S., Function Spaces (1997), Nordhoff: Nordhoff Leyden
[14] Meyer, Y., Wavelets and Operators (1992), Cambridge University press: Cambridge University press New York · Zbl 0776.42019
[15] Nečas, J., Les Methodes Directs en Theorie des Equationes Elliptique (1967), Academia: Academia Prague · Zbl 1225.35003
[16] V. Pluschke, Rothe’s Method for Parabolic Problems with Nonlinear Degenerating Coefficient, Report No. 14, des FB Mathematik und Informatik, 1996.; V. Pluschke, Rothe’s Method for Parabolic Problems with Nonlinear Degenerating Coefficient, Report No. 14, des FB Mathematik und Informatik, 1996.
[17] Resnikoff, H. L.; Wells, R. O., Wavelet Analysis (1998), Springer Verlag Inc: Springer Verlag Inc New York · Zbl 0922.42020
[18] Strang, G., Wavelets and dilation equations: a brief introduction, SIAM Rev., 31, 4, 614-627 (1989) · Zbl 0683.42030
[19] Williams, J. R.; Amaratunga, K., Introduction to wavelets in engineering, Int. J. Numer. Meth. Eng., 37, 2365-2388 (1994) · Zbl 0812.65144
[20] Xu, J. C.; Shann, W. C., Galerkin-wavelet methods for two-point boundary value problems, Numer. Math., 63, 123-144 (1992) · Zbl 0771.65050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.