×

Random matrices: universality of local eigenvalue statistics. (English) Zbl 1217.15043

The authors consider the universality of the local eigenvalue statistics of random matrices. The main result is Theorem 15, called the Four moment theorem. It shows that these statistics are determined by the first four moments of the distribution of the entries. As a consequence they derive the universality of the eigenvalue gap distribution and \(k\)-point correlation, and many other statistics for both Wigner Hermitian matrices and Wigner real symmetric matrices. Especially they give higher-order Hadamard variation formulae.

MSC:

15B52 Random matrices (algebraic aspects)
60B20 Random matrices (probabilistic aspects)
60E05 Probability distributions: general theory
60E15 Inequalities; stochastic orderings
62L20 Stochastic approximation
15A18 Eigenvalues, singular values, and eigenvectors

References:

[1] Anderson, G., Guionnet, A. & Zeitouni, O., An Introduction to Random Matrices. To appear by Cambridge University Press. · Zbl 1184.15023
[2] Bai, Z. & Silverstein, J. W., Spectral Analysis of Large Dimensional Random Matrices. Springer Series in Statistics. Springer, New York, 2010. · Zbl 1301.60002
[3] Bai, Z. D. & Yin, Y. Q., Convergence to the semicircle law. Ann. Probab., 16 (1988), 863–875. · Zbl 0648.60030 · doi:10.1214/aop/1176991792
[4] – Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a Wigner matrix. Ann. Probab., 16 (1988), 1729–1741. · Zbl 0677.60038 · doi:10.1214/aop/1176991594
[5] Ben Arous, G. & Péché, S., Universality of local eigenvalue statistics for some sample covariance matrices. Comm. Pure Appl. Math., 58 (2005), 1316–1357. · Zbl 1075.62014 · doi:10.1002/cpa.20070
[6] Bleher, P. & Its, A., Semiclassical asymptotics of orthogonal polynomials, Riemann–Hilbert problem, and universality in the matrix model. Ann. of Math., 150 (1999), 185–266. · Zbl 0956.42014 · doi:10.2307/121101
[7] Bleher, P. & Kuijlaars, A. B. J., Large n limit of Gaussian random matrices with external source. I. Comm. Math. Phys., 252 (2004), 43–76. · Zbl 1124.82309 · doi:10.1007/s00220-004-1196-2
[8] Chatterjee, S., A simple invariance principle. Preprint, 2005. arXiv:math/0508213 [math.PR].
[9] Costello, K.P., Tao, T. & Vu, V., Random symmetric matrices are almost surely nonsingular. Duke Math. J., 135 (2006), 395–413. · Zbl 1110.15020 · doi:10.1215/S0012-7094-06-13527-5
[10] Costello, K. P. & Vu, V., Concentration of random determinants and permanent estimators. SIAM J. Discrete Math., 23 (2009), 1356–1371. · Zbl 1200.15021 · doi:10.1137/080733784
[11] Costin, O. & Lebowitz, J., Gaussian fluctuations in random matrices. Phys. Rev. Lett., 75 (1995), 69–72. · doi:10.1103/PhysRevLett.75.69
[12] Curto, R.E. & Fialkow, L. A., Recursiveness, positivity, and truncated moment problems. Houston J. Math., 17 (1991), 603–635. · Zbl 0757.44006
[13] Deift, P., Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach. Courant Lecture Notes in Mathematics, 3. New York University–Courant Institute of Mathematical Sciences, New York, 1999. · Zbl 0997.47033
[14] – Universality for mathematical and physical systems, in International Congress of Mathematicians. Vol. I, pp. 125–152. Eur. Math. Soc., Zurich, 2007.
[15] Deift, P., Kriecherbauer, T., McLaughlin, K.T. R., Venakides, S. &amp; Zhou, X., Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math., 52 (1999), 1335–1425. · Zbl 0944.42013 · doi:10.1002/(SICI)1097-0312(199911)52:11<1335::AID-CPA1>3.0.CO;2-1
[16] Dyson, F. J., Correlations between eigenvalues of a random matrix. Comm. Math. Phys., 19 (1970), 235–250. · Zbl 0221.62019 · doi:10.1007/BF01646824
[17] Erdos, L., Péché, S., Ramírez, J. A., Schlein, B. &amp; Yau, H.-T., Bulk universality for Wigner matrices. Comm. Pure Appl. Math., 63 (2010), 895–925. · Zbl 1216.15025
[18] Erdos, L., Ramírez, J. A., Schlein, B., Tao, T., Vu, V. &amp; Yau, H.-T., Bulk universality for Wigner Hermitian matrices with subexponential decay. Math. Res. Lett., 17 (2010), 667–674. · Zbl 1277.15027 · doi:10.4310/MRL.2010.v17.n4.a7
[19] Erdos, L., Ramírez, J. A., Schlein, B. &amp; Yau, H.-T., Universality of sine-kernel for Wigner matrices with a small Gaussian perturbation. Electron. J. Probab., 15 (2010), 526–603. · Zbl 1225.15034 · doi:10.1214/EJP.v15-768
[20] Erdos, L., Schlein, B. &amp; Yau, H.-T., Local semicircle law and complete delocalization for Wigner random matrices. Comm. Math. Phys., 287 (2009), 641–655. · Zbl 1186.60005 · doi:10.1007/s00220-008-0636-9
[21] – Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Probab., 37 (2009), 815–852. · Zbl 1175.15028 · doi:10.1214/08-AOP421
[22] – Wegner estimate and level repulsion for Wigner random matrices. Int. Math. Res. Not. IMRN, 2010 (2010), 436–479. · Zbl 1204.15043
[23] Ginibre, J., Statistical ensembles of complex, quaternion, and real matrices. J. Mathematical Phys., 6 (1965), 440–449. · Zbl 0127.39304 · doi:10.1063/1.1704292
[24] Götze, F. &amp; Kösters, H., On the second-order correlation function of the characteristic polynomial of a Hermitian Wigner matrix. Comm. Math. Phys., 285 (2009), 1183–1205. · Zbl 1193.15035 · doi:10.1007/s00220-008-0544-z
[25] Guionnet, A. &amp; Zeitouni, O., Concentration of the spectral measure for large matrices. Electron. Comm. Probab., 5 (2000), 119–136. · Zbl 0969.15010
[26] Gustavsson, J., Gaussian fluctuations of eigenvalues in the GUE. Ann. Inst. H. Poincaré Probab. Statist., 41 (2005), 151–178. · Zbl 1073.60020 · doi:10.1016/j.anihpb.2004.04.002
[27] Jimbo, M., Miwa, T., Môri, Y. &amp; Sato, M., Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Phys. D, 1 (1980), 80–158. · Zbl 1194.82007 · doi:10.1016/0167-2789(80)90006-8
[28] Johansson, K., Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices. Comm. Math. Phys., 215 (2001), 683–705. · Zbl 0978.15020 · doi:10.1007/s002200000328
[29] Katz, N.M. &amp; Sarnak, P., Random Matrices, Frobenius Eigenvalues, and Monodromy. American Mathematical Society Colloquium Publications, 45. Amer. Math. Soc., Providence, RI, 1999. · Zbl 0958.11004
[30] Landau, H. J. (ed.), Moments in Mathematics. Proceedings of Symposia in Applied Mathematics, 37. Amer. Math. Soc., Providence, RI, 1987.
[31] Ledoux, M., The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs, 89. Amer. Math. Soc., Providence, RI, 2001.
[32] Levin, E. &amp; Lubinsky, D. S., Universality limits in the bulk for varying measures. Adv. Math., 219 (2008), 743–779. · Zbl 1176.28014 · doi:10.1016/j.aim.2008.06.010
[33] Lindeberg, J.W., Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung. Math. Z., 15 (1922), 211–225. · JFM 48.0602.04 · doi:10.1007/BF01494395
[34] Mehta, M. L., Random Matrices and the Statistical Theory of Energy Levels. Academic Press, New York, 1967. · Zbl 0925.60011
[35] Mehta, M. L. &amp; Gaudin, M., On the density of eigenvalues of a random matrix. Nuclear Phys., 18 (1960), 420–427. · Zbl 0107.35702 · doi:10.1016/0029-5582(60)90414-4
[36] Pastur, L., On the spectrum of random matrices. Teoret. Mat. Fiz., 10 (1972), 102–112 (Russian). English translation in Theoret. and Math. Phys., 10 (1972), 67–74.
[37] Pastur, L. &amp; Shcherbina, M., Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles. J. Stat. Phys., 86 (1997), 109–147. · Zbl 0916.15009 · doi:10.1007/BF02180200
[38] Paulauskas, V. &amp; Račkauskas, A., Approximation Theory in the Central Limit Theorem. Mathematics and its Applications, 32. Kluwer, Dordrecht, 1989.
[39] Péché, S. &amp; Soshnikov, A., Wigner random matrices with non-symmetrically distributed entries. J. Stat. Phys., 129 (2007), 857–884. · Zbl 1139.82019 · doi:10.1007/s10955-007-9340-y
[40] – On the lower bound of the spectral norm of symmetric random matrices with independent entries. Electron. Commun. Probab., 13 (2008), 280–290. · Zbl 1189.15046 · doi:10.1214/ECP.v13-1376
[41] Soshnikov, A., Universality at the edge of the spectrum in Wigner random matrices. Comm. Math. Phys., 207 (1999), 697–733. · Zbl 1062.82502 · doi:10.1007/s002200050743
[42] – Gaussian limit for determinantal random point fields. Ann. Probab., 30 (2002), 171–187. · Zbl 1033.60063 · doi:10.1214/aop/1020107764
[43] Talagrand, M., A new look at independence. Ann. Probab., 24 (1996), 1–34. · Zbl 0858.60019 · doi:10.1214/aop/1065725175
[44] Tao, T. &amp; Vu, V., On random {\(\pm\)}1 matrices: singularity and determinant. Random Structures Algorithms, 28 (2006), 1–23. · Zbl 1086.60008 · doi:10.1002/rsa.20109
[45] – Random matrices: the distribution of the smallest singular values. Geom. Funct. Anal., 20 (2010), 260–297. · Zbl 1210.60014 · doi:10.1007/s00039-010-0057-8
[46] – Random matrices: universality of local eigenvalue statistics up to the edge. Comm. Math. Phys., 298 (2010), 549–572. · Zbl 1202.15038 · doi:10.1007/s00220-010-1044-5
[47] Wigner, E. P., On the distribution of the roots of certain symmetric matrices. Ann. of Math., 67 (1958), 325–327. · Zbl 0085.13203 · doi:10.2307/1970008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.