×

Effective velocity in compressible Navier-Stokes equations with third-order derivatives. (English) Zbl 1211.35217

Summary: A formulation of certain barotropic compressible Navier-Stokes equations with third-order derivatives as a viscous Euler system is proposed by using an effective velocity variable. The equations model, for instance, viscous Korteweg or quantum Navier-Stokes flows. The formulation in the new variable allows for the derivation of an entropy identity, which is known as the BD (Bresch-Desjardins) entropy equation. As a consequence of this estimate, a new global-in-time existence result for the one-dimensional quantum Navier-Stokes equations with strictly positive particle densities is proved.

MSC:

35Q30 Navier-Stokes equations
35Q53 KdV equations (Korteweg-de Vries equations)
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
Full Text: DOI

References:

[1] Joseph, D.; Huang, A.; Hu, H., Non-solenoidal velocity effects and Korteweg stresses in simple mixtures of incompressible liquids, Physica D, 97, 104-125 (1996)
[2] Bresch, D.; Desjardins, B.; Lin, C.-K., On some compressible fluid models: Korteweg, lubrication and shallow water systems, Comm. Partial Differential Equations, 28, 1009-1037 (2003)
[3] Jüngel, A., (Transport Equations for Semiconductors. Transport Equations for Semiconductors, Lecture Notes in Physics, vol. 773 (2009), Springer: Springer Berlin)
[4] Bresch, D.; Desjardins, B., Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238, 211-223 (2003) · Zbl 1037.76012
[5] Bresch, D.; Desjardins, B., Some diffusive capillary models of Korteweg type, C. R. Acad. Sci., Paris, Sec. Mécanique, 332, 881-886 (2004) · Zbl 1386.76070
[6] Bresch, D., Shallow-water equations and related topics, (Dafermos, C.; Pokorný, M., Handbook of Differential Equations, vol. 5 (2009), North-Holland: North-Holland Hungary), 1-104 · Zbl 1193.35147
[7] Bresch, D.; Desjardins, B., On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl., 87, 57-90 (2007) · Zbl 1122.35092
[8] Brull, S.; Méhats, F., Derivation of viscous correction terms for the isothermal quantum Euler model, Z. Angew. Math. Mech., 90, 219-230 (2010) · Zbl 1355.82018
[9] Harvey, R., Navier-Stokes analog of quantum mechanics, Phys. Rev., 152, 1115 (1966)
[10] Korteweg, D., Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires par des variations de densité, Arch. Néer. Sci. Exactes Sér. II, 6, 1-24 (1901) · JFM 32.0756.02
[11] Dunn, J.; Serrin, J., On the thermomechanics of interstitial working, Arch. Ration. Mech. Anal., 88, 95-133 (1985) · Zbl 0582.73004
[12] Liu, T.-P.; Xin, Z.; Yang, T., Vacuum states of compressible flow, Discrete Contin. Dyn. Sys., 4, 132 (1998)
[13] Li, H.-L.; Li, J.; Xin, Z., Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations, Comm. Math. Phys., 281, 401-444 (2008) · Zbl 1173.35099
[14] Sun, M.-M.; Zhu, C.-J., Vacuum states on compressible Navier-Stokes equations with general density-dependent viscosity and general pressure law, Science China Ser. A: Math., 50, 1173-1185 (2007) · Zbl 1134.35389
[15] Zhang, T.; Fang, D., Compressible flows with a density-dependent viscosity constant, SIAM J. Math. Anal., 41, 2453-2488 (2010) · Zbl 1206.35203
[16] Mellet, A.; Vasseur, A., Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations, SIAM J. Math. Anal., 39, 1344-1365 (2008) · Zbl 1141.76054
[17] Hattori, H.; Li, D., Global solutions of a high-dimensional system for Korteweg materials, J. Math. Anal. Appl., 198, 84-97 (1996) · Zbl 0858.35124
[18] Chueh, K.; Conley, C.; Smoller, J., Positively invariant regions for systems of nonlinear diffusion equations, Indiana Math. J., 26, 373-392 (1977) · Zbl 0368.35040
[19] DiPerna, R., Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys., 91, 1-30 (1983) · Zbl 0533.76071
[20] Jüngel, A., Global weak solutions to compressible Navier-Stokes equations for quantum fluids, SIAM J. Math. Anal., 42, 1025-1045 (2010) · Zbl 1228.35083
[21] J. Dong, A note on barotropic compressible quantum Navier-Stokes equations, preprint, 2010.; J. Dong, A note on barotropic compressible quantum Navier-Stokes equations, preprint, 2010. · Zbl 1193.35128
[22] Brenner, H., Navier-Stokes revisited, Physica A, 349, 60-132 (2005)
[23] Jüngel, A.; Milišić, J.-P., Physical and numerical viscosity for quantum hydrodynamics, Commun. Math. Sci., 5, 447-471 (2007) · Zbl 1130.76088
[24] Wyatt, R., Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics (2005), Springer: Springer New York · Zbl 1107.81003
[25] Benzoni-Gavage, S.; Danchin, R.; Descombes, S., On the well-posedness for the Euler-Korteweg model in several space dimensions, Indiana Univ. Math. J., 56, 1499-1579 (2007) · Zbl 1125.76060
[26] Chen, G.-Q., Remarks on DiPerna’s paper “Convergence of the viscosity method for isentropic gas dynamics”, Proc. Amer. Math. Soc., 125, 2981-2986 (1997) · Zbl 0888.35066
[27] Degond, P.; Gallego, S.; Méhats, F., Isothermal quantum hydrodynamics: derivation, asymptotic analysis, and simulation, SIAM Multiscale Model. Simul., 6, 246-272 (2007) · Zbl 1135.82019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.