×

Vacuum states on compressible Navier-Stokes equations with general density-dependent viscosity and general pressure law. (English) Zbl 1134.35389

Summary: We study the one-dimensional motion of viscous gas with a general pressure law and a general density-dependent viscosity coefficient when the initial density connects to the vacuum state with a jump. We prove the global existence and the uniqueness of weak solutions to the compressible Navier-Stokes equations by using the line method. For this, some new a priori estimates are obtained to take care of the general viscosity coefficient \(\mu (\rho )\) instead of \(\rho ^{ \theta }\).

MSC:

35Q30 Navier-Stokes equations
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35B45 A priori estimates in context of PDEs
35D30 Weak solutions to PDEs
Full Text: DOI

References:

[1] Hoff D, Serre D. The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow. SIAM J Appl Math, 51: 887–898 (1991) · Zbl 0741.35057 · doi:10.1137/0151043
[2] Okada M. Free boundary value problems for the equation of one-dimensional motion of viscous gas. Japan J Indust Appl Math, 6: 161–177 (1989) · Zbl 0668.76081
[3] Luo T, Xin Z P, Yang T. Interface behavier of compressible Navier-Stokes equations with vacuum. SIAM J Math Anal, 31: 1175–1191 (2000) · Zbl 0966.35098 · doi:10.1137/S0036141097331044
[4] Liu T P, Xin Z P, Yang T. Vacuum states of compressible flow. Discret Contin Dyn Syst, 4: 1–32 (1998) · Zbl 0970.76084
[5] Jiang S. Global smooth solutions of the equations of a viscous, heat-conducting, one-dimensional gas with density-dependent viscosity. Math Nachr, 190: 169–183 (1998) · Zbl 0927.35014 · doi:10.1002/mana.19981900109
[6] Okada M, Nečasová Š M, Makino T. Free boundaty problem for the equation of one-dimensional motion of compressible gas with density-dependent viscosity, Annali dell’Universita di Ferrara. Se 7-Sc Mat, 48: 1–20 (2002) · Zbl 1027.76042
[7] Yang T, Yao Z A, Zhu C J. Compressible Navier-Stokes equations with density-dependent viscosity and vacuum. Commun Partial Differ Equ, 26: 965–981 (2001) · Zbl 0982.35084 · doi:10.1081/PDE-100002385
[8] Jiang S, Xin Z P, Zhang P. Globle weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscocity. Meth Appl Anal, 12(3): 239–252 (2005) · Zbl 1110.35058
[9] Yang T, Zhao H J A vacuum problem for the one-dimensional compressible Navier-Stokes equations with density-dependent viscosity. J Differ Equ, 184: 163–184 (2002) · Zbl 1003.76073 · doi:10.1006/jdeq.2001.4140
[10] Yang T, Zhu C J. Compressile Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Comm Math Phys, 230: 329–363 (2002) · Zbl 1045.76038 · doi:10.1007/s00220-002-0703-6
[11] Vong S W, Yang T, Zhu C J. Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum (II). J Differ Equ, 192: 475–501 (2003) · Zbl 1025.35020 · doi:10.1016/S0022-0396(03)00060-3
[12] Xin Z P. Blow-up of smooth solutions to the compressible Navier-Stokes equations with compact density. Commun Pure Appl Math, 51: 229–240 (1998) · Zbl 0937.35134 · doi:10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C
[13] Okada M. Free boundary problem for one-dimensional motions of compressible gas and vacuum. Japan J Indust Appl Math, 21: 109–128 (2004) · Zbl 1096.35116 · doi:10.1007/BF03167467
[14] Chen G Q, Hoff D, Trivisa K. Global solutions of the compressible Navier-Stokes equations with large discontinuous initial data. Commun Partial Differ Equ, 25: 2233–2257 (2000) · Zbl 0977.35104 · doi:10.1080/03605300008821583
[15] Chen G Q, Kratka M. Global solutions to the Navier-Stokes equations for compressible heat conducting flow with symmetry and free boundary. Commun Partial Differ Equ, 27(5-6): 907–943 (2002) · Zbl 1072.35141 · doi:10.1081/PDE-120004889
[16] Hoff D, Liu T P. The inviscid limit for the Navier-Stokes equations of compressible isentropic flow with shock data. Indiana Univ Math J, 38: 861–915 (1989) · Zbl 0674.76047 · doi:10.1512/iumj.1989.38.38041
[17] Lions P L. Mathematical Topics in Fluid Mechanics Vols. 1 & 2. Oxford: Clarendon Press, 1998 · Zbl 0908.76004
[18] Serre D. Sur l’equatoin mondimensionnelle d’un fluide visqueux, compressible et conducteur de chaleur. Comptes rendus Acad des Sciences, 303: 703–706 (1986) · Zbl 0611.35070
[19] Hoff D, Smoller J. Non-formation of vacuum states for compressible Navier-Stokes equations. Commun Math Phys, 216: 255–276 (2001) · Zbl 0988.76081 · doi:10.1007/s002200000322
[20] Xin Z P, Yuan H J. Vacuum state for spherically symmetric solutions of the compressible Navier-Stokes equations. J Hyperbo Differ Equ, 3(3): 403–442 (2006) · Zbl 1106.35054 · doi:10.1142/S0219891606000847
[21] Yang T. Singular behavior of vacuum states for compressible fluids. J Comput Appl Math, 190(1-2): 211–231 (2006) · Zbl 1083.76052 · doi:10.1016/j.cam.2005.01.043
[22] Yang T. Some recent results on compressible flow with vacuum. Taiwanese J Math, 4: 33–44 (2000) · Zbl 0958.35111
[23] Hoff D. Construction of solutions for compressible, isentropic Navier-Stokes equations in one space dimension with nonsmooth initial data. Proc Roy Soc Edinburgh, Sect A, 103: 301–315 (1986) · Zbl 0635.35074
[24] Nishida T. Equations of motion of compressible viscous fluid. Patterns and Waves-Qualitative Analysis of Nonlinear Differential Equations, 1986, 97–128
[25] Fang D Y, Zhang T. Global solutions of the Navier-Stokes equations for compressible flow with densitydependent viscosity and discontinuous initial data. J Differ Equ, 222: 63–94 (2006) · Zbl 1357.35245 · doi:10.1016/j.jde.2005.07.011
[26] Fang D Y, Zhang T. Compressible Navier-Stokes equations with vacuum state in the case of general pressure law. Math Meth Appl Sci, 9: 1081–1106 (2006) · Zbl 1184.35259 · doi:10.1002/mma.708
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.