×

Characterizing strong stability preserving additive Runge-Kutta methods. (English) Zbl 1203.65109

Summary: Space discretization of some time dependent partial differential equations give rise to ordinary differential equations containing additive terms with different stiffness properties. In these situations, additive Runge-Kutta (additive RK) methods are used. For additive RK methods the curve of absolute monotonicity gives stepsize restrictions for monotonicity. Necessary conditions for nontrivial curves of absolute monotonicity are the nonnegativity of the additive RK coefficients and some inequalities on some incidence matrices. In this paper we characterize strong stability preserving additive Runge-Kutta methods giving some order barriers and structural properties.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Ascher, U.M., Ruuth, S.J., Spiteri, R.: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997) · Zbl 0896.65061 · doi:10.1016/S0168-9274(97)00056-1
[2] Constantinescu, E.M., Sandu, A.: Multirate timestepping methods for hyperbolic conservation laws. J. Sci. Comput. 33, 239–278 (2007) · Zbl 1127.76033 · doi:10.1007/s10915-007-9151-y
[3] Dekker, K., Verwer, J.G.: Stability of Runge-Kutta methods for stiff nonlinear differential equations. CWI Monographs 2. Amsterdam (1984) · Zbl 0571.65057
[4] Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge-Kutta methods. SIAM J. Numer. Anal. 42, 1073–1093 (2004) · Zbl 1080.65087 · doi:10.1137/S0036142902415584
[5] Ferracina, L., Spijker, M.N.: Strong stability of singly-diagonally-implicit Runge-Kutta methods. Appl. Numer. Math. 58, 1675–1686 (2008). · Zbl 1153.65080 · doi:10.1016/j.apnum.2007.10.004
[6] Gerisch, A., Griffiths, D.F., Weiner, R., Chaplain, M.A.J.: A positive splitting method for mixed hyperbolic-parabolic systems. Numer. Methods Partial Diff. Equ. 17, 152–168 (2001) · Zbl 0981.65112 · doi:10.1002/1098-2426(200103)17:2<152::AID-NUM5>3.0.CO;2-A
[7] Gottlieb, S.: On high order strong stability-preserving Runge-Kutta and multi step time discretizations. J. Sci. Comput. 25, 105–128 (2005) · Zbl 1203.65166
[8] Gottlieb, S., Shu, C.W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. 67, 73–85 (1998) · Zbl 0897.65058 · doi:10.1090/S0025-5718-98-00913-2
[9] Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high order time discretization methods. SIAM Rev. 43, 89–112 (2001) · Zbl 0967.65098 · doi:10.1137/S003614450036757X
[10] Higueras, I.: On strong stability preserving time discretization methods. J. Sci. Comput. 21, 193–223 (2004) · Zbl 1074.65095 · doi:10.1023/B:JOMP.0000030075.59237.61
[11] Higueras, I.: Representations of Runge-Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43, 924–948 (2005) · Zbl 1097.65078 · doi:10.1137/S0036142903427068
[12] Higueras, I.: Strong stability for additive Runge-Kutta methods. SIAM J. Numer. Anal. 44, 1735–1758 (2006) · Zbl 1126.65067 · doi:10.1137/040612968
[13] Kennedy, C.A., Carpenter, M.H.: Additive Runge-Kutta schemes for convection-diffusion-reaction equations. NASA Technical Memorandum NASA/TM-2001-211038. Langley Research Center, Hampton, VA, 2001 (2003)
[14] Kennedy, C.A., Carpenter, M.H.: Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44, 139–181 (2003) · Zbl 1013.65103 · doi:10.1016/S0168-9274(02)00138-1
[15] Ketcheson, D.: Highly efficient strong stability-preserving Runge–Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30, 2113–2136 (2008) · Zbl 1168.65382 · doi:10.1137/07070485X
[16] Ketcheson, D., MacDonald, C.B., Gottlieb, S.: Optimal implict strong stability preserving Runge–Kutta methods. Appl. Numer. Math. (2008). doi: 10.1016/j.apnum.2008.03.034 · Zbl 1157.65046
[17] Kraaijevanger, J.F.B.M.: Contractivity of Runge-Kutta methods. BIT 31, 482–528 (1991) · Zbl 0763.65059 · doi:10.1007/BF01933264
[18] Martin, R.H.: Nonlinear Operators and Differential Equations in Banach Spaces. Wiley, New York (1976) · Zbl 0333.47023
[19] Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations. In: Brugnano, L., Trigiante, D. (eds.) Recent Trends in Numerical Analysis, vol. 3, pp. 269–289 (2000) · Zbl 1018.65093
[20] Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129–155 (2005) · Zbl 1203.65111
[21] Ruuth, S.J.: Global optimization of explicit strong-stability-preserving Runge-Kutta methods. Math. Comput. 75, 183–207 (2006) · Zbl 1080.65088
[22] Ruuth, S.J., Spiteri, R.J.: Two barriers on strong stability preserving time discretization methods. J. Sci. Comput. 17, 211–220 (2002) · Zbl 1003.65107 · doi:10.1023/A:1015156832269
[23] Ruuth, S.J., Spiteri, R.J.: High-order strong-stability-preserving Runge-Kutta methods with downwind-biased spatial discretizations. SIAM J. Numer. Anal. 42, 974–996 (2004) · Zbl 1089.65069 · doi:10.1137/S0036142902419284
[24] Shu, C.W.: Total variation diminishing time discretizations. SIAM J. Sci. Comput. 9, 1073–1084 (1988) · Zbl 0662.65081 · doi:10.1137/0909073
[25] Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988) · Zbl 0653.65072 · doi:10.1016/0021-9991(88)90177-5
[26] Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45, 1226–1245 (2007) · Zbl 1144.65055 · doi:10.1137/060661739
[27] Spiteri, R.J., Ruuth, S.J.: A new class of optimal high order strong stability preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2002) · Zbl 1020.65064 · doi:10.1137/S0036142901389025
[28] Zhong, X.: Additive semi-implicit Runge-Kutta methods for computing high speed nonequilibrium reactive flows J. Comput. Phys. 128, 19–31 (1996) · Zbl 0861.76057 · doi:10.1006/jcph.1996.0193
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.