×

Rotational surfaces in \({\mathbb{L}^3}\) and solutions of the nonlinear sigma model. (English) Zbl 1182.53057

Summary: The Gauss map of non-degenerate surfaces in the three-dimensional Minkowski space are viewed as dynamical fields of the two-dimensional \(O(2,1)\) nonlinear sigma model. In this setting, the moduli space of solutions with rotational symmetry is completely determined. Essentially, the solutions are warped products of orbits of the one-dimensional groups of isometries and elastic curves in either a de Sitter plane, a hyperbolic plane or an anti de Sitter plane. The main tools are the equivalence of the two-dimensional \(O(2,1)\) nonlinear sigma model and the Willmore problem, and the description of the surfaces with rotational symmetry. A complete classification of such surfaces is obtained in this paper. Indeed, a huge new family of Lorentzian rotational surfaces with a space-like axis is presented. The description of this new class of surfaces is based on a technique of surgery and a gluing process, which is illustrated by an algorithm.

MSC:

53C43 Differential geometric aspects of harmonic maps
53A05 Surfaces in Euclidean and related spaces
81T13 Yang-Mills and other gauge theories in quantum field theory
53B30 Local differential geometry of Lorentz metrics, indefinite metrics

References:

[1] Albertsson C., Lindstrom U., Zabzine M.: Commun. Math. Phys. 233, 403 (2003)
[2] Albertsson C., Lindstrom U., Zabzine M.: Nucl. Phys. B 678, 295 (2004) · Zbl 1097.81548 · doi:10.1016/j.nuclphysb.2003.11.024
[3] Anzellotti G., Serapioni R., Tamanini I.: Indiana Univ. Math. J. 39, 617 (1990) · Zbl 0718.49030 · doi:10.1512/iumj.1990.39.39033
[4] Anzellotti, G., Delladio, S.: Proceedings of a Conference in Honor of the 70th Birthday of Robert Finn, Stanford University. Boston-Cambridge, MA: International Press Incorporated, 1995 · Zbl 0840.49008
[5] Barros M.: Phys. Lett. B 553, 325 (2003) · Zbl 1006.81042 · doi:10.1016/S0370-2693(02)03266-5
[6] Barros M., Caballero M., Ortega M.: J. Geom. Phys. 57, 177 (2006) · Zbl 1119.58009 · doi:10.1016/j.geomphys.2006.02.010
[7] Belavin A.A., Polyakov A.M.: JETP Lett. 22, 245 (1975)
[8] Birman G.S., Nomizu K.: Michigan Math. J. 31, 77 (1984) · Zbl 0591.53053 · doi:10.1307/mmj/1029002964
[9] Bracken, P.: The generalized Weiertrass system for nonconstant mean curvature surfaces and the nonlinear sigma model. http://arXiv.org/abs/math-ph/0607048v1 , 2006 · Zbl 1105.35100
[10] Bredthauer, A.: Tensionless Strings and Supersymmetric Sigma Models. Aspects of the Target Space Geometry. Uppsala: Acta Universitatis Upsaliensis, 2006
[11] Byrd P.F., Friedman M.D.: Handbook of Elliptic Integrals for Engineers an Scientists. Springer-Verlag, Berlin-Heidelberg-New York (1971) · Zbl 0213.16602
[12] Capovilla R., Guven J.: J. Phys. A 38, 2593 (2005) · Zbl 1061.92008 · doi:10.1088/0305-4470/38/12/004
[13] Cavalcante F.S.A., Cunha M.S., Almeida C.A.S.: Phys. Lett. B 475, 315 (2000) · Zbl 1049.81552 · doi:10.1016/S0370-2693(00)00077-0
[14] Chelnokov V.E., Zeitlin M.G.: Phys. Lett. A 104, 329 (1984) · Zbl 0577.35097 · doi:10.1016/0375-9601(84)90809-0
[15] Davis H.T.: Introduction to Nonlinear Differential and Integral Equations. Dover Publications, Inc., New York (1962) · Zbl 0106.28904
[16] Davis A.C., Macfarlane A.J., van Holten J.W.: Nucl. Phys. B 216, 493 (1983) · doi:10.1016/0550-3213(83)90297-3
[17] Do Carmo M.P., Dajzer M.: Tôhoku Math. J. 34, 425 (1982) · Zbl 0501.53003 · doi:10.2748/tmj/1178229204
[18] Gruszczak J.: J. Phys. A 14, 3247 (1981) · Zbl 0485.35077 · doi:10.1088/0305-4470/14/12/020
[19] Hano J., Nomizu K.: Tôhoku Math. J. (2) 36, 427 (1984) · Zbl 0535.53002 · doi:10.2748/tmj/1178228808
[20] Howe P.S., Lindstrom U., Stojevic V.: JHEP 0601, 159 (2006) · doi:10.1088/1126-6708/2006/01/159
[21] Langer J., Singer D.A.: J. Diff. Geom. 20, 1 (1984)
[22] Laughlin R.B.: Phys. Rev. Lett. 60, 2677 (1988) · doi:10.1103/PhysRevLett.60.2677
[23] Mieck, B.: Nonlinear sigma model for a condensate composed of fermionic atoms. http://arXiv.org/abs/cond-mat/0501139v3[cond-mat.stat-mech] , 2005 · Zbl 1091.81506
[24] Mishchenko Y., Chueng-Ryong Ji.: Int. J. Mod. Phys. A 20, 3488 (2005) · Zbl 1071.81082 · doi:10.1142/S0217751X05026819
[25] Nešović, E., Petrović-Torgašev, M., Verstraelen, L.: Bolletino U. M. I. (8) 8-B, 685 (2005)
[26] Ody M.S., Ryder L.H.: Int. J. Mod. Phys. A 10, 337 (1995) · Zbl 1044.58502 · doi:10.1142/S0217751X95000140
[27] O’Neill B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, London-New York (1983)
[28] Otsu H., Sato T., Ikemori H., Kitakado S.: JHEP 0507, 052 (2005) · doi:10.1088/1126-6708/2005/07/052
[29] Palais R.S.: Commun. Math. Phys. 69, 19 (1979) · Zbl 0417.58007 · doi:10.1007/BF01941322
[30] Polyakov A.M.: Phys. Lett. B 103, 207 (1981) · doi:10.1016/0370-2693(81)90743-7
[31] Polyakov A.M.: Phys. Lett. B 103, 211 (1981) · doi:10.1016/0370-2693(81)90744-9
[32] Purkait S., Ray D.: Phys. Lett. A 116, 247 (1986) · doi:10.1016/0375-9601(86)90143-X
[33] Schützhold R., Mostane S.: JETP Lett. 82, 248 (2005) · doi:10.1134/1.2130906
[34] Simons J.: Ann. Math. 88, 62 (1968) · Zbl 0181.49702 · doi:10.2307/1970556
[35] Tseytlin A.A.: Phys. Lett. B 288, 279 (1992) · doi:10.1016/0370-2693(92)91104-H
[36] Tseytlin A.A.: Phys. Rev. D 47, 3421 (1993) · doi:10.1103/PhysRevD.47.3421
[37] Tsurumaru T., Tsutsui I.: Phys. Lett. B 460, 94 (1999) · Zbl 0987.81054 · doi:10.1016/S0370-2693(99)00740-6
[38] Vekslerchik V.E.: J. Phys. A: Math. Gen. 27, 6299 (1994) · Zbl 0844.35130 · doi:10.1088/0305-4470/27/18/036
[39] Weiner J.L.: Indiana Univ. Math. J. 27, 19 (1978) · doi:10.1512/iumj.1978.27.27003
[40] Willmore T.J.: Total Curvature in Riemannian Geometry. John Wiley and Sons, New York (1982) · Zbl 0501.53038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.