×

Recent advances in the numerical analysis of Volterra functional differential equations with variable delays. (English) Zbl 1170.65103

The author considers initial value problems of a linear (ordinary) delay differential equation involving Volterra integral operators, i.e., a Volterra functional integro-differential equation (VFIDE). Thereby, the delay is a predetermined nonlinear time-dependent function, which may be equal to zero at the beginning (vanishing delay). Omitting the integral operators, the linear delay differential equation reduces to the pantograph equation, [cf. M. Arnold and B. Simeon [Appl. Numer. Math. 34, 345–362 (2000; Zbl 0964.65101)].
Considering the VFIDE, a collocation method is constructed straightforward using piecewise polynomials of degree not exceeding \(m\) on a uniform mesh. In case of non-vanishing delay, previous work shows an optimal global (uniform) superconvergence of order \(m+1\), whereas the optimal local superconvergence exhibits the order \(2m\) in the collocation points. In case of vanishing delay, the author proves an optimal global (uniform) convergence of order \(m\) and an optimal local superconvergence of order \(m+2\) for \(m \geq 3\). The generalisation of the results to a VFIDE of second order is outlined.
Finally, the author specifies some open problems in this context, for example, the asymptotic behaviour of the exact solutions or of the numerical solutions for VFIDEs. Numerical results of test examples are not within the scope of the paper. Since the author wants to provide a survey on recent results, a huge number of references is given.

MSC:

65R20 Numerical methods for integral equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
65L70 Error bounds for numerical methods for ordinary differential equations
34K06 Linear functional-differential equations
34K28 Numerical approximation of solutions of functional-differential equations (MSC2010)
45J05 Integro-ordinary differential equations
45G10 Other nonlinear integral equations

Citations:

Zbl 0964.65101
Full Text: DOI

References:

[1] Andreoli, G., Sulle equazioni integrali, Rend. Circ. Mat. Palermo, 37, 76-112 (1914) · JFM 45.0539.03
[2] Arnold, M.; Simeon, B., Pantograph and catenary dynamics: A benchmark problem and its numerical solution, Appl. Numer. Math., 34, 345-362 (2000) · Zbl 0964.65101
[3] Bélair, J., Sur une équation différentielle fonctionnelle analytique, Canad. Math. Bull., 24, 43-46 (1981) · Zbl 0457.34052
[4] Bellen, A., One-step collocation for delay differential equations, J. Comput. Appl. Math., 10, 275-283 (1984) · Zbl 0538.65047
[5] Bellen, A., Preservation of superconvergence in the numerical integration of delay differential equations with proportional delay, IMA J. Numer. Anal., 22, 529-536 (2002) · Zbl 1031.65089
[6] Bellen, A.; Brunner, H.; Maset, S.; Torelli, L., Superconvergence in collocation methods on quasi-graded meshes for functional differential equations with vanishing delays, BIT, 46, 229-247 (2006) · Zbl 1109.65112
[7] Bellen, A.; Guglielmi, N.; Torelli, L., Asymptotic stability properties of \(\theta \)-methods for the pantograph equation, Appl. Numer. Math., 24, 275-293 (1997) · Zbl 0878.65064
[8] Bellen, A.; Zennaro, M., Numerical Methods for Delay Differential Equations (2003), Oxford University Press: Oxford University Press Oxford · Zbl 0749.65042
[9] Brunner, H., The numerical solution of neutral Volterra integro-differential equations with delay arguments, Ann. Numer. Math., 1, 309-322 (1994) · Zbl 0828.65146
[10] Brunner, H., On the discretization of differential and Volterra integral equations with variable delay, BIT, 37, 1-12 (1997) · Zbl 0873.65126
[11] Brunner, H., The discretization of Volterra functional integral equations with proportional delays, (Elaydi, S.; Ladas, G.; Wu, J.; Zou, X., Difference and Differential Equations. Difference and Differential Equations, Changsha 2002. Difference and Differential Equations. Difference and Differential Equations, Changsha 2002, Fields Institute Communications, vol. 42 (2004), American Mathematical Society: American Mathematical Society Providence), 3-27 · Zbl 1067.65149
[12] Brunner, H., The numerical analysis of functional integral and integro-differential equations of Volterra type, Acta Numer., 55-145 (2004)
[13] Brunner, H., Collocation Methods for Volterra Integral and Related Functional Equations (2004), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1059.65122
[14] Brunner, H.; Hu, Q.-Y., Superconvergence of iterated collocation solutions for Volterra integral equations with variable delays, SIAM J. Numer. Anal., 43, 1934-1949 (2005) · Zbl 1103.65136
[15] Brunner, H.; Hu, Q.-Y., Optimal superconvergence results for delay integro-differential equations of pantograph type, SIAM J. Numer. Anal., 45, 986-1004 (2007) · Zbl 1144.65083
[16] Brunner, H.; Hu, Q.-Y.; Lin, Q., Geometric meshes in collocation methods for Volterra integral equations with proportional delays, IMA J. Numer. Anal., 21, 783-798 (2001) · Zbl 1014.65143
[17] Brunner, H.; Vermiglio, R., Stability of solutions of neutral functional integro-differential equations and their discretizations, Computing, 71, 229-245 (2003) · Zbl 1049.65150
[18] Brunner, H.; Zhang, W., Primary discontinuities in solutions for delay integro-differential equations, Methods Appl. Anal., 6, 525-533 (1999) · Zbl 0959.45002
[19] Buhmann, M. D.; Iserles, A., Numerical analysis of functional equations with a variable delay, (Griffiths, D. F.; Watson, G. A., Numerical Analysis. Numerical Analysis, Dundee 1991. Numerical Analysis. Numerical Analysis, Dundee 1991, Pitman Res. Notes Math. Ser., vol. 260 (1992), Longman Scientific & Technical: Longman Scientific & Technical Harlow), 17-33 · Zbl 0795.65048
[20] Buhmann, M. D.; Iserles, A., On the dynamics of a discretized neutral equation, IMA J. Numer. Anal., 12, 339-363 (1992) · Zbl 0759.65056
[21] Buhmann, M. D.; Iserles, A., Stability of the discretized pantograph differential equation, Math. Comp., 60, 575-589 (1993) · Zbl 0774.34057
[22] Buhmann, M.; Iserles, A.; Nørsett, S. P., Runge-Kutta methods for neutral differential equations, (Agarwal, R. P., Contributions in Numerical Mathematics. Contributions in Numerical Mathematics, Singapore 1993 (1993), World Scientific Publ.: World Scientific Publ. River Edge, NJ), 85-98 · Zbl 0834.65061
[23] Carvalho, L. A.V.; Cooke, K. L., Collapsible backward continuation and numerical approximations in a functional differential equation, J. Differential Equations, 143, 96-109 (1998) · Zbl 0911.34063
[24] Chambers, Ll. G., Some properties of the functional equation \(\phi(x) = f(x) + \int_0^{\lambda x} g(x, y, \phi(y)) d y\), Int. J. Math. Math. Sci., 14, 27-44 (1990) · Zbl 0714.45007
[25] P.G. Ciarlet, Private communication, City University of Hong Kong, April 2006; P.G. Ciarlet, Private communication, City University of Hong Kong, April 2006
[26] Derfel, G. A.; Vogl, F., On the asymptotics of solutions to a class of linear functional-differential equations, Eur. J. Appl. Math., 7, 511-518 (1996) · Zbl 0859.34049
[27] Feldstein, A.; Iserles, A.; Levin, D., Embedding of delay equations into an infinite-dimensional ODE system, J. Differential Equations, 117, 127-150 (1995) · Zbl 0817.34045
[28] Feldstein, A.; Liu, Y., On neutral functional-differential equations with variable time delays, Math. Proc. Cambridge Philos. Soc., 124, 371-384 (1998) · Zbl 0913.34067
[29] Fox, L.; Mayers, D. F.; Ockendon, J. R.; Tayler, A. B., On a functional differential equation, J. Inst. Math. Appl., 8, 271-307 (1971) · Zbl 0251.34045
[30] Grossman, S. I.; Miller, R. K., Perturbation theory for Volterra integro-differential systems, J. Differential Equations, 8, 457-474 (1970) · Zbl 0209.14101
[31] Guglielmi, N., Short proofs and a counterexample for analytical and numerical stability of delay equations with infinite memory, IMA J. Numer. Anal., 26, 60-77 (2006) · Zbl 1118.65090
[32] Guglielmi, N.; Zennaro, M., Stability of one-leg \(\theta \)-methods for the variable coefficient pantograph equation on the quasi-geometric mesh, IMA J. Numer. Anal., 23, 421-438 (2003) · Zbl 1055.65094
[33] Hall, A. J.; Wake, G. C., A functional-differential equation arising in modelling of cell growth, J. Aust. Math. Soc. Ser. B, 30, 424-435 (1989) · Zbl 0689.34063
[34] Hall, A. J.; Wake, G. C., Functional-differential equations determining steady size distributions for populations of cells growing exponentially, J. Aust. Math. Soc. Ser. B, 31, 434-453 (1990) · Zbl 0711.92017
[35] Huang, C.; Vandewalle, S., Discretized stability and error growth of the nonautonomous pantograph equation, SIAM J. Numer. Anal., 42, 2020-2042 (2005) · Zbl 1080.65068
[36] Iserles, A., On the generalized pantograph functional differential equation, Eur. J. Appl. Math., 4, 1-38 (1993) · Zbl 0767.34054
[37] Iserles, A., Numerical analysis of delay differential equations with variable delays, Ann. Numer. Math., 1, 133-152 (1994) · Zbl 0828.65083
[38] Iserles, A., On nonlinear delay-differential equations, Trans. Amer. Math. Soc., 344, 441-477 (1994) · Zbl 0804.34065
[39] Iserles, A., Exact and discretized stability of pantograph equations, Appl. Numer. Math., 24, 295-308 (1997) · Zbl 0880.65058
[40] Iserles, A., Beyond the classical theory of computational ordinary differential equations, (Duff, I. S.; Watson, G. A., The State of the Art in Numerical Analysis. The State of the Art in Numerical Analysis, York 1996 (1997), Clarendon Press: Clarendon Press Oxford), 171-192 · Zbl 0886.65073
[41] Iserles, A.; Terjéki, J., Stability and asymptotic stability of functional-differential equations, J. London Math. Soc. (2), 51, 559-572 (1995) · Zbl 0832.34080
[42] Ishiwata, E., On the attainable order of collocation methods for the neutral functional-differential equations with proportional delays, Computing, 64, 207-222 (2000) · Zbl 0955.65098
[43] Jackiewicz, Z., Asymptotic stability analysis of \(\theta \)-methods for functional differential equations, Numer. Math., 43, 389-396 (1984) · Zbl 0557.65047
[44] Kato, T., Asymptotic behaviour of solutions of the functional differential equation \(y^\prime(x) = a y(\lambda x) + b y(x)\), (Schmitt, K., Delay and Functional Differential Equations and Applications. Delay and Functional Differential Equations and Applications, Park City, Utah, 1972 (1972), Academic Press: Academic Press New York), 197-217 · Zbl 0278.34070
[45] Kato, T.; McLeod, J. B., The functional-differential equation \(y^\prime(x) = a y(\lambda x) + b y(x)\), Bull. Amer. Math. Soc., 77, 891-937 (1971) · Zbl 0236.34064
[46] Koto, T., Stability of Runge-Kutta methods for the generalized pantograph equation, Numer. Math., 84, 233-247 (1999) · Zbl 0943.65091
[47] Li, D.; Liu, M., Asymptotic stability of numerical solution of pantograph delay differential equations, J. Harbin Inst. Tech., 31, 57-59 (1999), (in Chinese) · Zbl 0970.65548
[48] Liang, J.; Liu, M., Stability of numerical solutions to pantograph delay systems, J. Harbin Inst. Tech., 28, 21-26 (1996), (in Chinese) · Zbl 0970.65550
[49] Liang, J.; Liu, M., Numerical stability of \(\theta \)-methods for pantograph delay differential equations, J. Numer. Methods Comput. Appl., 12, 271-278 (1996), (in Chinese)
[50] Liang, J.; Qiu, S.; Liu, M., The stability of \(\theta \)-methods for pantograph delay differential equations, Numer. Math. (English Ser.), 5, 80-85 (1996) · Zbl 0869.65052
[51] Liu, M.; Wang, Z.; Hu, G., Asymptotic stability of numerical methods with constant stepsize for pantograph equations, BIT, 45, 743-759 (2005) · Zbl 1095.65075
[52] Liu, M.; Wang, Z.; Xu, Y., The stability of Runge-Kutta methods for the pantograph equation, Math. Comp., 75, 1201-1215 (2006) · Zbl 1094.65075
[53] Liu, W.; Clements, J. C., On solutions of evolution equations with proportional time delay, Int. J. Differ. Equ. Appl., 4, 229-254 (2002) · Zbl 0984.35163
[54] Liu, Y., Stability analysis of \(\theta \)-methods for neutral functional-differential equations, Numer. Math., 70, 473-485 (1995) · Zbl 0824.65081
[55] Liu, Y., On \(\theta \)-methods for delay differential equations with infinite lag, J. Comput. Appl. Math., 71, 177-190 (1996) · Zbl 0853.65076
[56] Liu, Y., Asymptotic behaviour of functional-differential equations with proportional time delays, Eur. J. Appl. Math., 7, 11-30 (1996) · Zbl 0856.34078
[57] Liu, Y., Numerical investigation of the pantograph equation, Appl. Numer. Math., 24, 309-317 (1997) · Zbl 0878.65065
[58] Lubich, Ch., Convolution quadrature revisited, BIT, 44, 503-514 (2004) · Zbl 1083.65123
[59] Marshall, J. C.; van-Brunt, B.; Wake, G. C., A natural boundary for solutions to the second order pantograph equation, J. Math. Anal. Appl., 299, 314-321 (2004) · Zbl 1066.34067
[60] Muroya, Y.; Ishiwata, E.; Brunner, H., On the attainable order of collocation methods for pantograph integro-differential equations, J. Comput. Appl. Math., 152, 347-366 (2003) · Zbl 1023.65146
[61] Ockendon, J. R.; Tayler, A. B., The dynamics of a current collection system for an electric locomotive, Proc. Roy. Soc. London Ser. A, 322, 447-468 (1971)
[62] Qiu, L.; Mitsui, T.; Kuang, J.-X., The numerical stability of the \(\theta \)-method for delay differential equations with many variable delays, J. Comput. Math., 17, 523-532 (1999) · Zbl 0942.65087
[63] Si, J.-G.; Cheng, S. S., Analytic solutions of a functional differential equation with proportional delays, Bull. Korean Math. Soc., 39, 225-236 (2002) · Zbl 1021.34052
[64] Takama, N.; Muroya, Y.; Ishiwata, E., On the attainable order of collocation methods for the delay differential equations with proportional delay, BIT, 40, 374-394 (2000) · Zbl 0965.65101
[65] Tayler, A. B., Mathematical Models in Applied Mathematics (1986), Clarendon Press: Clarendon Press Oxford, See pp. 40-53 · Zbl 0588.35001
[66] Wake, G. C.; Cooper, S.; Kim, H.-K.; van-Brunt, B., Functional differential equations for cell-growth models with dispersion, Commun. Appl. Anal., 4, 561-573 (2000) · Zbl 1084.34545
[67] Xu, Y.; Zhao, J.; Liu, M., \(H\)-stability of Runge-Kutta methods with variable stepsize for systems of pantograph equations, J. Comput. Math., 22, 727-734 (2004) · Zbl 1059.65068
[68] Yu, Y.; Li, S., Stability analysis of Runge-Kutta methods for nonlinear systems of pantograph equations, J. Comput. Math., 23, 351-356 (2005) · Zbl 1081.65078
[69] Zhang, C.-J.; Sun, G., The discrete dynamics of nonlinear infinite-delay differential equations, Appl. Math. Lett., 15, 521-526 (2002) · Zbl 1001.65091
[70] Zhang, C.-J.; Sun, G., Nonlinear stability of Runge-Kutta methods applied to infinite-delay-differential equations, Math. Comput. Modelling, 39, 495-503 (2004) · Zbl 1068.65106
[71] Zhang, C.-J.; Vandewalle, S., General linear methods for Volterra integro-differential equations with memory, SIAM J. Sci. Comput., 27, 2010-2031 (2006) · Zbl 1104.65133
[72] Zhang, W.; Brunner, H., Collocation approximations for second-order differential equations and Volterra integro-differential equations with variable delays, Canad. Appl. Math. Q., 6, 269-285 (1998) · Zbl 0924.65140
[73] Zhao, J.; Xu, Y.; Liu, M., Stability analysis of numerical methods for linear neutral Volterra delay-integro-differential system, Appl. Numer. Math., 167, 1062-1079 (2005) · Zbl 1083.65129
[74] Zhao, J.; Xu, Y.; Qiao, Y., The attainable order of the collocation method for double-pantograph delay differential equation, Numer. Math. J. Chinese Univ., 27, 297-308 (2005), (in Chinese) · Zbl 1100.65061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.