×

On the contractivity of implicit-explicit linear multistep methods. (English) Zbl 1001.65090

Stability properties of implicit-explicit linear multistep methods (IMEX) are analyzed for the case of initial value problems for ordinary differential equations composed of stiff and nonstiff parts. In particular, the paper deals with contractivity and strong stability of the iterative process in the case of the linear autonomous test problem and an Euclidean norm. Several proposition and theorems concerning the contractivity and strong stability of IMEX are proved. The situation where the contractivity region is replaced by the larger stability region, is also considered.

MSC:

65L20 Stability and convergence of numerical methods for ordinary differential equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
Full Text: DOI

References:

[1] Akrivis, G.; Crouzeix, M.; Makridakis, C., Implicit-explicit multistep methods for quasilinear parabolic equations, Numer. Math., 82, 521-541 (1999) · Zbl 0936.65118
[2] Ascher, U. M.; Ruuth, S. J.; Wetton, B. T.R., Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., 32, 797-823 (1995) · Zbl 0841.65081
[3] Crouzeix, M., Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques, Numer. Math., 35, 257-276 (1980) · Zbl 0419.65057
[4] van Dorsselaer, J. L.M.; Hundsdorfer, W., Stability estimates based on numerical ranges with an application to a spectral method, BIT, 34, 228-238 (1994) · Zbl 0806.65101
[5] Frank, J.; Hundsdorfer, W.; Verwer, J. G., On the stability of implicit-explicit linear multistep methods, Appl. Numer. Math., 25, 193-205 (1997) · Zbl 0887.65094
[6] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations II (1996), Springer: Springer Berlin · Zbl 0859.65067
[7] Horn, R. A.; Johnson, C. R., Topics in Matrix Analysis (1991), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0729.15001
[9] Jorge, J. C.; Lisbona, F., Contractivity results for alternating direction schemes in Hilbert spaces, Appl. Numer. Math., 15, 65-75 (1994) · Zbl 0810.65051
[10] Lancaster, P.; Tismenetsky, M., The Theory of Matrices (1985), Academic Press: Academic Press Orlando, FL · Zbl 0516.15018
[11] von Neumann, J., Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr., 4, 258-281 (1951) · Zbl 0042.12301
[12] Nevanlinna, O., Matrix valued versions of a result of von Neumann with an application to time discretization, J. Comput. Appl. Math., 12-13, 475-489 (1985) · Zbl 0573.65036
[13] Ostermann, A.; Thalhammer, M., Non-smooth data error estimates for linearly implicit Runge-Kutta methods, IMA J. Numer. Anal., 20, 167-184 (2000) · Zbl 0954.65060
[14] Spijker, M. N., A note on contractivity in the numerical solution of initial value problems, BIT, 27, 424-437 (1987) · Zbl 0626.65063
[15] Sz.-Nagy, B., Unitary Dilations of Hilbert Space Operators and Related Topics. Unitary Dilations of Hilbert Space Operators and Related Topics, CBMS Regional Conf. Ser. in Math., 19 (1974), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0281.47004
[16] Varah, J. M., Stability restrictions on second order, three level finite difference schemes for parabolic equations, SIAM J. Numer. Anal., 17, 300-309 (1980) · Zbl 0426.65048
[17] Verwer, J. G.; Blom, J. G.; Hundsdorfer, W., An implicit-explicit approach for atmospheric transport-chemistry problems, Appl. Numer. Math., 20, 191-209 (1996) · Zbl 0853.76092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.