×

Stability estimates based on numerical ranges with an application to a spectral method. (English) Zbl 0806.65101

Authors’ summary: This paper is concerned with the stability of numerical processes for solving initial value problems. We present a stability result which is related to a well-known theorem by von Neumann, but the requirements to be satisfied are less severe and easier to verify.
As an illustration we consider a simple convection-diffusion equation. For the spatial discretization we use a spectral collocation method (based on so-called Legendre-Gauss-Lobatto points). We show that the fully discretized numerical process is stable, provided that the temporal step size is bounded by a constant depending only on the convection- diffusion equation, the number of collocation points and the time- stepping method under consideration.
Reviewer: S.Jiang (Bonn)

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
35K15 Initial value problems for second-order parabolic equations
Full Text: DOI

References:

[1] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang,Spectral Methods in Fluid Dynamics, Springer, 1988. · Zbl 0658.76001
[2] J. L. M. van Dorsselaer, J. F. B. M. Kraaijevanger, and M. N. Spijker,Linear stability analysis in the numerical solution of initial value problems, Acta Numerica, 1993 (1993), pp. 199–237. · Zbl 0796.65091
[3] D. Gottlieb,The stability of pseudospectral-Chebyshev methods, Math. Comp., 36 (1981), pp. 107–118. · Zbl 0469.65076 · doi:10.1090/S0025-5718-1981-0595045-1
[4] D. Gottlieb and E. Tadmor,The CFL condition for spectral approximations to hyperbolic initial-boundary value problems, Math. Comp., 56 (1991), pp. 565–588. · Zbl 0723.65079 · doi:10.1090/S0025-5718-1991-1066833-9
[5] E. Hairer and G. Wanner,Solving Ordinary Differential Equations II, Springer, 1991. · Zbl 0729.65051
[6] H. W. J. Lenferink and M. N. Spijker,A generalization of the numerical range of a matrix, Lin. Alg. Appl., 140 (1990), pp. 251–266. · Zbl 0712.15027 · doi:10.1016/0024-3795(90)90232-2
[7] H. W. J. Lenferink and M. N. Spijker,On the use of stability regions in the numerical analysis of initial value problems, Math. Comp., 57 (1991), pp. 221–237. · Zbl 0727.65072 · doi:10.1090/S0025-5718-1991-1079026-6
[8] C. Lubich and O. Nevanlinna,On resolvent conditions and stability estimates, BIT, 31 (1991), pp. 293–313. · Zbl 0731.65043 · doi:10.1007/BF01931289
[9] R. P. van der Marel,Stability radius of polynomials occurring in the numerical solution of initial value problems, BIT, 30 (1990), pp. 516–528. · Zbl 0711.65067 · doi:10.1007/BF01931665
[10] A. Mofid and R. Peyret,Stability of the Chebyshev collocation approximation to the advection-diffusion equation, Computers Fluids, 22 (1993), pp. 453–465. · Zbl 0779.76072 · doi:10.1016/0045-7930(93)90019-6
[11] O. Nevanlinna,Matrix valued versions of a result of von Neumann with an application to time discretization, J. Comp. Appl. Math., 12 & 13 (1985), pp. 475–489. · Zbl 0573.65036 · doi:10.1016/0377-0427(85)90041-X
[12] S. C. Reddy and L. N. Trefethen,Lax-stability of fully discrete spectral methods via stability regions and pseudo-eigenvalues, Comp. Meth. Appl. Mech. Eng., 80 (1990), pp. 147–164. · Zbl 0735.65070 · doi:10.1016/0045-7825(90)90019-I
[13] S. C. Reddy and L. N. Trefethen,Stability of the method of lines, Numer. Math., 62 (1992), pp. 235–267. · doi:10.1007/BF01396228
[14] F. Riesz and B. Sz.-Nagy,Leçons d’Analyse Fonctionelle, 2nd ed., Akadémiai Kiado, 1953.
[15] B. Sz.-Nagy and C. Foiaş,On certain classes of power-bounded operators in Hilbert space, Acta Sci. Math., 27 (1966), pp. 17–25. · Zbl 0141.32201 · doi:10.1016/S0076-5392(09)60260-5
[16] B. Sz.-Nagy and C. Foiaş,Harmonic Analysis of Operators on Hilbert Space, North-Holland Publishing Company and Akadémiai Kiado, 1970. · Zbl 0201.45003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.