×

Integral manifolds, canards and black swans. (English) Zbl 0985.34039

Consider the singularly perturbed system of nonautonomous differential equations \[ dx/dt =f(x,y,t,\varepsilon), \quad \varepsilon dy/dt =2ty+a+g(x,y,t,a,\varepsilon), \tag \(*\) \] with \(x \in \mathbb{R}^n\), \(y \in \mathbb{R}\), \(0<\varepsilon \ll 1\). Assume that for \(\varepsilon =0\), \(a =0\), system \((*)\) has the invariant manifold \(y=0\). The authors derive conditions on \(f\) and \(g\) ensuring the existence of a function \(a(x,\varepsilon)\) such that \((*)\) has an integral manifold \({\mathcal{M}}_\varepsilon : = \{(x,y,t,\varepsilon)\in \mathbb{R}^{n+3}: y=h(x,t,\varepsilon)\}\) that is attracting for \(t<0\) and repelling for \(t>0\); moreover, \(a\) and \(h\) tend to zero as \(\varepsilon\) tends to zero. The authors call the integral manifold \({\mathcal{M}}_\varepsilon\) a black swan (higher-dimensional canard solution).

MSC:

34C45 Invariant manifolds for ordinary differential equations
34E15 Singular perturbations for ordinary differential equations
Full Text: DOI

References:

[1] V.I. Arnold, V.S. Afraimovich, Yu.S. Il’yashenko, L.P. Shil’nikov, Theory of Bifurcations, in: V. Arnold (Ed.), Dynamical Systems, Encyclopedia of Mathematical Sciences, Vol. 5, Springer, New York, 1994.; V.I. Arnold, V.S. Afraimovich, Yu.S. Il’yashenko, L.P. Shil’nikov, Theory of Bifurcations, in: V. Arnold (Ed.), Dynamical Systems, Encyclopedia of Mathematical Sciences, Vol. 5, Springer, New York, 1994.
[2] Benoit, E., Systèmes lents-rapides dans \(R^3\) et leurs canards, Société Mathématique de France, Astérisque, 109-110, 159-191 (1938) · Zbl 0529.34037
[3] Benoit, E.; Callot, J. L.; Diener, F.; Diener, M., Chasse au canard, Collect. Math., 31-32, 1-3, 37-110 (1981) · Zbl 0529.34046
[4] Brøns, M.; Bar-Eli, K., Asymptotic analysis of canards in the EOE equations and the role of the inflaction line, Proc. London Roy Soc. A, 445, 305-322 (1994) · Zbl 0807.34067
[5] M. Diener, Nessie et Les Canards, Publication IRMA, Strasbourg, 1979.; M. Diener, Nessie et Les Canards, Publication IRMA, Strasbourg, 1979.
[6] Eckhaus, W., Relaxation oscillations including a standart chase on French ducks, Lecture Notes Math., 925, 449-494 (1983) · Zbl 0509.34037
[7] Gol’dshtein, V.; Zinoviev, A.; Sobolev, V.; Shchepakina, E., Criterion for thermal explosion with reactant consumption in a dusty gas, Proc. of London Roy Soc. A, 452, 2103-2119 (1996) · Zbl 0874.34052
[8] Gorelov, G. N.; Sobolev, V. A., Mathematical modeling of critical phenomena in thermal explosion theory, Combust. Flame, 87, 203-210 (1991)
[9] Gorelov, G. N.; Sobolev, V. A., Duck-trajectories in a thermal explosion problem, Appl. Math. Lett., 5, 6, 3-6 (1992) · Zbl 0767.34040
[10] Grasman, J.; Wentzel, J. J., Co-existence of a limit cycle and an equilibrium in Kaldor’s business cycle model and its consequences, J. Econom. Behav. Organ., 24, 369-377 (1994)
[11] M.A. Krasnosel’skii, P.P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Nauka, Moscow, 1975 (in Russian).; M.A. Krasnosel’skii, P.P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Nauka, Moscow, 1975 (in Russian).
[12] Yu.A. Mitropol’skii, O.B. Lykova, Integral Manifolds in Nonlinear Mechanics, Nauka, Moscow 1973 (in Russian).; Yu.A. Mitropol’skii, O.B. Lykova, Integral Manifolds in Nonlinear Mechanics, Nauka, Moscow 1973 (in Russian).
[13] E.F. Mishchenko, Yu.S. Kolesov, A.Yu. Kolesov, N.Kh. Rozov, Asymptotic Methods in Singularly Perturbed Systems, Plenum Press, New York, 1995.; E.F. Mishchenko, Yu.S. Kolesov, A.Yu. Kolesov, N.Kh. Rozov, Asymptotic Methods in Singularly Perturbed Systems, Plenum Press, New York, 1995. · Zbl 0840.34067
[14] E.F. Mishchenko, N.Kh. Rozov, Differential Equations with Small Parameters and Relaxation Oscillations, Plenum Press, New York, 1980.; E.F. Mishchenko, N.Kh. Rozov, Differential Equations with Small Parameters and Relaxation Oscillations, Plenum Press, New York, 1980. · Zbl 0482.34004
[15] E.A. Shchepakina, V.A. Sobolev, Standard chase on black swans and canards, Weierstraß-Institut für Angewandte Analysis und Stochastik, preprint No. 426, Berlin, 1998.; E.A. Shchepakina, V.A. Sobolev, Standard chase on black swans and canards, Weierstraß-Institut für Angewandte Analysis und Stochastik, preprint No. 426, Berlin, 1998.
[16] Sobolev, V. A.; Shchepakina, E. A., Self-ignition of laden medium, J. Combust. Explosion Shock Waves, 29, 3, 378-381 (1993)
[17] V.A. Sobolev, E.A. Shchepakina, Duck-trajectories in one problem of combustion theory, Differentsialnye Uravneniya 32 (9) (1996) 1175-1184 (in Russian).; V.A. Sobolev, E.A. Shchepakina, Duck-trajectories in one problem of combustion theory, Differentsialnye Uravneniya 32 (9) (1996) 1175-1184 (in Russian). · Zbl 0893.34054
[18] V.A. Sobolev, E.A. Shchepakina, Integral surfaces of variable stability and duck-trajectories, Trans. RANS, Ser. MMMIC 1 (3) (1997) 151-175 (in Russian).; V.A. Sobolev, E.A. Shchepakina, Integral surfaces of variable stability and duck-trajectories, Trans. RANS, Ser. MMMIC 1 (3) (1997) 151-175 (in Russian). · Zbl 0927.34031
[19] V.V. Strygin, V.A. Sobolev, Separation of Motions by the Integral Manifolds Method, Nauka, Moscow, 1988 (in Russian).; V.V. Strygin, V.A. Sobolev, Separation of Motions by the Integral Manifolds Method, Nauka, Moscow, 1988 (in Russian). · Zbl 0657.70002
[20] Zvonkin, A. K.; Shubin, M. A., Non-standard analysis and singular perturbations of ordinary differential equations, Russian Math. Surveys, 39, 2, 69-131 (1984) · Zbl 0549.34055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.