×

An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. (English) Zbl 0957.76043

Summary: We develop a Cartesian grid method for simulating two-dimensional unsteady viscous incompressible flows with complex immersed boundaries. A finite volume method based on a second-order accurate central-difference scheme is used in conjunction with a two-step fractional-step procedure. The key aspects that need to be considered in developing such a solver are imposition of boundary conditions on the immersed boundaries and accurate discretization of the governing equation in cell that are cut by these boundaries. To this end, we present a new interpolation procedure which allows systematic development of a spatial discretization scheme that preserves the second-order spatial accuracy of the underlying solver. The presence of immersed boundaries alters the conditioning of the linear operators, and this can slow down the iterative solution of these equations. The convergence is accelerated by using a preconditioned conjugate gradient method, where the preconditioner takes advantage of the structured nature of the underlying mesh. The accuracy of the solver is validated by simulating a number of canonical flows, and the ability of the solver to simulate flows with very complicated immersed boundaries is demonstrated.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids

References:

[1] Almgren, A. S.; Bell, J. B.; Colella, P.; Marthaler, T., A Cartesian grid projection method for the incompressible Euler equations in complex geometries, SIAM J. Sci. Comput., 18, 1289 (1997) · Zbl 0910.76040
[2] Barrett, R.; Berry, M.; Chan, T.; Demmel, T.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.; van der Vorst, H., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (1993) · Zbl 0814.65030
[3] S. A. Bayyuk, K. G. Powell, and, B. van Leer, A simulation technique for 2-D unsteady inviscid flows around arbitrarily moving and deforming bodies of arbitrary geometry, AIAA Paper 93-3391-CP, 1993.; S. A. Bayyuk, K. G. Powell, and, B. van Leer, A simulation technique for 2-D unsteady inviscid flows around arbitrarily moving and deforming bodies of arbitrary geometry, AIAA Paper 93-3391-CP, 1993.
[4] M. J. Berger, and, R. J. Le Veque, An adaptive Cartesian mesh algorithm for the Euler equation in arbitrary geometries, AIAA Paper 92-0443, 1992.; M. J. Berger, and, R. J. Le Veque, An adaptive Cartesian mesh algorithm for the Euler equation in arbitrary geometries, AIAA Paper 92-0443, 1992.
[5] Brandt, A., Multilevel adaptive solutions to boundary value problems, Math. Comput., 31, 333 (1977) · Zbl 0373.65054
[6] Briggs, W. L., A Multigrid Tutorial (1987) · Zbl 0659.65095
[7] Chen, J. H.; Pritchard, W. G.; Tavener, S. J., Bifurcation for flow past a cylinder between parallel planes, J. Fluid Mech., 284, 23 (1995) · Zbl 0842.76015
[8] Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math. Comput., 22, 745 (1968) · Zbl 0198.50103
[9] Dennis, S. C.R.; Chang, G.-Z., Numerical solution for steady flow past a circular cylinder at Reynolds numbers up to 100, J. Fluid Mech., 42, 471 (1970) · Zbl 0193.26202
[10] D. De Zeeuw, and, K. G. Powell, An adaptively refined Cartesian mesh solver for the Euler equations, AIAA Paper 91-1542, 1991.; D. De Zeeuw, and, K. G. Powell, An adaptively refined Cartesian mesh solver for the Euler equations, AIAA Paper 91-1542, 1991.
[11] Fornberg, B., A numerical study of steady viscous flow past a circular cylinder, J. Fluid Mech., 98, 819 (1980) · Zbl 0428.76032
[12] Ferziger, J. H.; Peric, M., Computational Methods for Fluid Dynamics (1996) · Zbl 0869.76003
[13] Georgiadis, J. G.; Noble, D. R.; Uchanski, M. R.; Buckius, R. O., Tortuous micro-flow in large distorted packed beds, J. Fluid Eng., 118, 434 (1996)
[14] Goldstein, D.; Handler, R.; Sirovich, L., Modeling of a no-slip surface with and external flow field, J. Comput. Phys., 105, 354 (1993) · Zbl 0768.76049
[15] Golub, G. H.; Loan, C. F.Van, Matrix Computations (1989), Johns Hopkins Univ. Press: Johns Hopkins Univ. Press Baltimore · Zbl 0733.65016
[16] Jackson, C. P., A finite element study of the onset of vortex shedding in flow past variously shaped bodies, J. Fluid Mech., 182, 23 (1987) · Zbl 0639.76041
[17] Kan, H. C.; Udaykumar, H. S.; Shyy, W.; Tran-Son-Tay, R., Hydrodynamics of a compound drop with application to Leukocyte modeling, Phys. Fluids, 10, 760 (1998)
[18] Leveque, R. J.; Li, Z., The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31 (1019) · Zbl 0811.65083
[19] Mittal, R.; Balachandar, S., Effect of intrinsic three-dimensionality on the lift and drag of nominally two-dimensional cylinders, Phys. Fluids, 7, 1841 (1995) · Zbl 1032.76530
[20] Mittal, R.; Balachandar, S., Direct numerical simulation of flow past elliptic cylinders, J. Comput. Phys., 124, 351 (1996) · Zbl 0849.76064
[21] R. Mittal, and, S. Balachandar, Inclusion of three-dimensional effects in simulations of two-dimensional bluff-body wake flows, in, Proceedings, 1997 ASME Fluids Engineering Division Summer Meeting.; R. Mittal, and, S. Balachandar, Inclusion of three-dimensional effects in simulations of two-dimensional bluff-body wake flows, in, Proceedings, 1997 ASME Fluids Engineering Division Summer Meeting.
[22] Nonino, C.; Comini, G., An equal-order velocity-pressure algorithm for incompressible thermal flows, Numer. Heat Transfer Part B, 32, 1 (1997)
[23] Patankar, S. V., Numerical Heat Transfer and Fluid Flow (1980) · Zbl 0595.76001
[24] Pember, R. B.; Bell, J. B.; Colella, P.; Crutchfield, W. Y.; Welcome, M. L., An adaptive Cartesian grid method for unsteady compressible flow in irregular regions, J. Comput. Phys., 120, 278 (1995) · Zbl 0842.76056
[25] Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 220 (1977) · Zbl 0403.76100
[26] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes in Fortran the Art of Scientific Computing (1992) · Zbl 0778.65002
[27] Provensal, M.; Mathis, C.; Boyer, L., Benard-von Karman instability: Transient and forced regimes, J. Fluid Mech., 182, 1 (1987) · Zbl 0641.76046
[28] Quirk, J. J., An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies, Comput. Fluids, 23, 125 (1994) · Zbl 0788.76067
[29] Rhie, C. M.; Chow, W. L., Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA J., 21, 1525 (1983) · Zbl 0528.76044
[30] Scardovelli, R.; Zaleski, S., Direct numerical simulation of free surface and interfacial flow, Ann. Rev. Fluid Mech., 31, 567 (1999)
[31] Shyy, W.; Udaykumar, H. S.; Rao, M. M.; Smith, R. W., Computational Fluid Dynamics with Moving Boundaries (1996) · Zbl 0887.76059
[32] Sotiropoulos, F.; Abdallah, S., The discrete continuity equation in primitive variable solutions of incompressible flow, J. Comput. Phys., 95, 212 (1991) · Zbl 0725.76058
[33] Tafti, D., Alternate formulations for the pressure equation Laplacian on a collocated grid for solving the unsteady incompressible Navier-Stokes equations, J. Comput. Phys., 116, 143 (1995) · Zbl 0817.76048
[34] Tritton, D. J., Experiments on the flow past a circular cylinder at low Reynolds number, J. Fluid Mech., 6, 547 (1959) · Zbl 0092.19502
[35] Udaykumar, H. S.; Shyy, W.; Rao, M. M., Elafint: A mixed Eulerian-Lagrangian method for fluid flows with complex and moving boundaries, Int. J. Numer. Methods Fluids, 22, 691 (1996) · Zbl 0887.76059
[36] Udaykumar, H. S.; Kan, H.-C.; Shyy, W.; Tran-Son-Tay, R., Multiphase dynamics in arbitrary geometries on fixed Cartesian grids, J. Comput. Phys., 137, 366 (1997) · Zbl 0898.76087
[37] Udaykumar, H. S.; Mittal, R.; Shyy, W., Solid-liquid phase front computations in the sharp interface limit on fixed grids, J. Comput. Phys., 153, 535-574 (1999) · Zbl 0953.76071
[38] Van der Vorst, H. A., Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems, SIAM J. Sci. Statist. Comput., 13, 631 (1992) · Zbl 0761.65023
[39] Wannier, G. H., A. contribution to the hydrodynamics of lubrication, Quart. Appl. Math., 8, 1 (1950) · Zbl 0036.25804
[40] Wieselsberger, C., New Data on the Laws of Fluid Resistance (1922)
[41] Williamson, C. H.K., Vortex dynamics in the cylinder wake, Ann. Rev. Fluid Mech., 28, 477 (1996) · Zbl 0899.76129
[42] Yusof, J. M., Interaction of Massive Particles with Turbulence (1996)
[43] Zang, Y.; Street, R. L.; Koseff, J. R., A non-staggered grid, fractional step method for time-dependent incompressible Navier-Stokes equations in Curvilinear coordinates, J. Comput. Phys., 114, 18 (1994) · Zbl 0809.76069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.