×

Multiphase dynamics in arbitrary geometries on fixed Cartesian grids. (English) Zbl 0898.76087

A mixed Eulerian-Lagrangian algorithm for interface tracking is applied to compute flows with solid-fluid and fluid-fluid interfaces. The method is capable of handling fluid flows in the presence of both irregularly shaped solid boundaries and moving boundaries on a fixed Cartesian grid. The field equations are solved on the underlying fixed grid using a collocated variable, pressure-based formulation. The moving boundary is tracked explicitly by the Lagrangian translation of marker particles. The performance is demonstrated by the simulation of Newtonian liquid drops.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76T99 Multiphase and multicomponent flows

Software:

RIPPLE
Full Text: DOI

References:

[1] Shyy, W.; Udaykumar, H. S.; Rao, M. M.; Smith, R. W., Computational Fluid Dynamics with Moving Boundaries (1996), Hemisphere: Hemisphere Washington · Zbl 0887.76059
[2] Kang, I. S.; Leal, L. G., Numerical solution of axisymmetric, unsteady free-boundary problems at finite Reynolds number. I. Finite-difference scheme and its application to the deformation of a bubble in a uniaxial straining flow, Phys. Fluids, 30, 1929 (1987) · Zbl 0632.76121
[3] Glimm, J.; Grove, J.; Lindquist, B.; McBryan, O. A.; Tryggvason, G., The bifurcation of tracked scalar waves, SIAM J. Sci. Stat. Comput., 9, 61 (1988) · Zbl 0636.65132
[4] Osher, S.; Sethian, J. A., Fronts propagating with curvature dependent speed: Algorithms based in Hamilton-Jacobi formulations, J. Comput. Phys., 79, 12 (1988) · Zbl 0659.65132
[5] Kothe, D. B.; Mjolsness, R. C., RIPPLE: A new method for incompressible flows with free surfaces, AIAA J., 30, 2694 (1992) · Zbl 0762.76074
[6] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114, 146 (1994) · Zbl 0808.76077
[7] Hirt, C. W.; Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201 (1981) · Zbl 0462.76020
[8] Sethian, J. A., Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Science (1996), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0859.76004
[9] Unverdi, S. O.; Tryggvason, G., A front tracking method for viscous, incompressible, multifluid flows, J. Comput. Phys., 100, 25 (1992) · Zbl 0758.76047
[10] Nobari, M. R.; Jan, Y.-J.; Tryggvason, G., Head-on collision of droplets—A numerical investigation, Phys. Fluids, 8, 29 (1996) · Zbl 1023.76588
[11] Udaykumar, H. S.; Shyy, W., Simulation of morphological instabilities during solidification; part I: conduction and capillarity effects, Int. J. Heat Mass Transf., 38, 2057 (1995) · Zbl 0923.76215
[12] Udaykumar, H. S.; Rao, M. M.; Shyy, W., ELAFINT, Int. J. Numer. Meths. Fluids, 22, 691 (1996) · Zbl 0887.76059
[13] Juric, D.; Tryggvason, G., A front tracking method for dendritic solidification, J. Comput. Phys., 123, 127 (1996) · Zbl 0843.65093
[14] Quirk, J. J., An Alternative to Unstructured Grids for Computing Gas Dynamic Flows around Arbitrarily Complex Two-Dimensional Bodies, ICASE Report, 92-7 (1992)
[15] Pember, R. B.; Bell, J. B.; Colella, P., An adaptive Cartesian grid method for unsteady compressible flow in irregular regions, J. Comput. Phys., 120, 278 (1995) · Zbl 0842.76056
[16] Young, D. P.; Melvin, R. G.; Bieterman, M. B.; Johnson, F. T.; Samant, S. S.; Bussoletti, J. E., A locally refined rectangular grid finite element method: Application to computational fluid dynamics and computational physics, J. Comput. Phys., 92, 1 (1992) · Zbl 0709.76078
[17] Zeeuw, D. D.; Powell, K. G., An Adaptively-Refined Cartesian Mesh Solver for the Euler Equations, AIAA Paper, 90-0000 (1990)
[18] Bayyuk, S. A.; Powell, K. G.; van Leer, V., A Simulation Technique for 2-D Unsteady Inviscid Flows around Arbitrarily Moving and Deforming Bodies of Arbitrary Geometry, AIAA Paper, 93-3391 (1993)
[19] Goldstein, D.; Handler, R.; Sirovich, L., Modeling a no-slip surface with an external force field, J. Comput. Phys., 105, 354 (1993) · Zbl 0768.76049
[20] Goldstein, D.; Handler, R.; Sirovich, L., Direct numerical simulation of turbulent flow over a modeled riblet covered surface, J. Fluid Mech., 302, 333 (1995) · Zbl 0885.76074
[21] Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 220 (1977) · Zbl 0403.76100
[22] Miyata, H., Finite difference simulation of breaking waves, J. Comput. Phys., 65, 179 (1986) · Zbl 0591.76024
[23] Udaykumar, H. S.; Shyy, W., A grid-supported marker particle scheme for interface tracking, Num. Heat Transf. B, 27, 127 (1995)
[24] Lien, F. S.; Leschziner, M. A., A general non-orthogonal collocated finite volume algorithm for turbulent flow at all speeds incorporating second-moment turbulence-transport closure, parts 1 & 2: computational implementation and applications, Comput. Methods Appl. Mech. Engrg., 114, 123 (1994)
[25] Patankar, S. V., Numerical Heat Transfer and Fluid Flow (1980), Hemisphere: Hemisphere Washington · Zbl 0595.76001
[26] Shyy, W., Computational Modelling for Fluid Flow and Interfacial Transport (1994), Elsevier: Elsevier Amsterdam
[27] Fauci, L. J.; Peskin, C. S., A computational model of aquatic animal locomotion, J. Comput. Phys., 77, 85 (1988) · Zbl 0641.76140
[28] Rhie, C. M.; Chow, W. L., Numerical study of turbulent flow past an airfoil with trailing edge separation, AIAA J., 21, 1525 (1983) · Zbl 0528.76044
[29] Majumdar, S., Role of underrelaxation in momentum interpolation for calculation of flow with nonstaggered grids, Numer. Heat Transfer, 13, 125 (1988)
[30] Peskin, C. S.; Printz, B. F., Improved volume conservation in the computation of flows with immersed elastic boundaries, J. Comput. Phys., 105, 33 (1993) · Zbl 0762.92011
[31] Stone, H. A.; Leal, L. G., Relaxation and breakup of an initially extended droplet in an otherwise quiescent fluid, J. Fluid Mech., 198, 399 (1989)
[32] Shyy, W.; Rao, M. M., Calculation of meniscus shapes and transport processes in float zone, Int. J. Heat Mass Transf., 38, 2281 (1995) · Zbl 0925.76785
[33] Thakur, S.; Wright, J.; Shyy, W.; Liu, J.; Ouyang, H.; Vu, T., Development of pressure-based composite multigrid methods for complex fluid flows, Prog. Aerosp. Sci., 32, 313 (1996)
[34] Stone, H. A.; Leal, L. G., The influence of initial deformation on droplet breakup in subcritical time-dependent flows at low Reynolds numbers, J. Fluid Mech., 206, 223 (1989)
[35] Mashayek, F.; Ashgriz, N., A spline-flux method for simulating free surface flows, J. Comput. Phys., 122, 367 (1996) · Zbl 0840.76036
[36] Ryskin, G.; Leal, L. G., Numerical solution of free-boundary problems in fluid mechanics. Parts I, II, and III, J. Fluid Mech., 148, 1 (1984) · Zbl 0548.76031
[37] Olbricht, W. L.; Kung, D. M., The deformation and breakup of liquid droplets in low Reynolds number flow through a capillary, Phys. Fluids, 4, 1347 (1992)
[38] Olbricht, W. L.; Leal, L. G., The creeping motion of immiscible droplets through a converging/diverging nozzle, J. Fluid Mech., 134, 329 (1993)
[39] Tsai, T. M.; Miksis, M. J., Dynamics of a droplet in a constricted capillary tube, J. Fluid Mech., 274, 197 (1994) · Zbl 0825.76139
[40] Manga, M., Dynamics of droplets in cavity flows: Aggregation of high viscosity ratio droplets, Phys. Fluids, 8, 1732 (1996) · Zbl 1027.76681
[41] Manga, M., Dynamics of droplets in branched tubes, J. Fluid Mech., 315, 105 (1996) · Zbl 0875.76638
[42] Lee, Y. L.; Panton, R. L.; Ball, K. S., Steady shape of a bubble in flow through a vertical capillary tube, Proceedings of the ASME Fluids Engineering Division. Proceedings of the ASME Fluids Engineering Division, FED, 234 (1995), IMECE
[43] H.-C. Kan, 1997, Computational Study of Leukocyte Rheology Based on A Multilayer Fluid Model, The University of Florida; H.-C. Kan, 1997, Computational Study of Leukocyte Rheology Based on A Multilayer Fluid Model, The University of Florida
[44] Chang, Y. C.; Hou, T. Y.; Merriman, B.; Osher, S., A level set formulation of Eulerian capturing methods for incompressible fluid flows, J. Comput. Phys., 124, 449 (1996) · Zbl 0847.76048
[45] Hou, T. Y.; Li, Z.; Osher, S.; Zhao, H., A hybrid method for moving interface problems with applications to the Hele-Shaw flow, J. Comput. Phys., 134, 236 (1997) · Zbl 0888.76067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.