×

An interpolation theorem and a sharp form of a multilinear fractional integration theorem. (English) Zbl 0801.42013

Let \(I_ \alpha (f_ 1, \dots, f_ k) (x) = \int_{R^ n} f_ 1 (x - \theta_ 1y) \dots f_ k(x -\theta_ ky) | y |^{\alpha - n} dy\) be a multilinear fractional integration operator with \(\theta_ j \in \mathbb{R} \backslash 0\), \(1 \leq j \leq k\). The following theorem which generalizes the results of Adams and Grafakos is proved.
Theorem. Let \(k \geq 1\), \(p \in (1,\infty)\), \(\alpha = n/p\), \({1 \over p} = \sum^ k_{j = 1} {1 \over p_ j}\), \(p_ j \in (1,\infty]\). Then there exists a constant \(c_ 0 = c_ 0(p)\) such that for all \(f_ j \in L^{p_ j} (\mathbb{R}^ n)\) supported by \(\Omega \subset \mathbb{R}^ n\), \(| \Omega | < \infty\), \({1 \over | \Omega |} \int_ \Omega \exp ({n \over \omega_{n - 1}} \bigl| {LI_ \alpha (f_ 1, \dots, f_ k) (x) \over \| f_ 1 \|_{p_ 1} \dots \| f_ k \|_{p_ k}}\bigr|^{p'}) dx \leq c_ 0\), where \(L = \prod^ k_{j = 1} | \theta_ j |^{n/p_ j}\), \(\omega_{n-1}\) is a surface area of the unit sphere in \(\mathbb{R}^ n\), \({1\over p'}+ {1 \over p} = 1\). Furthermore, this inequality fails if \(n/ \omega_{n - 1}\) is replaced by a larger constant.
The result above is obtained by making use of a sharp interpolation theorem for Orlicz spaces with the Luxemburg norm.

MSC:

42B99 Harmonic analysis in several variables
26A33 Fractional derivatives and integrals
46B70 Interpolation between normed linear spaces
Full Text: DOI

References:

[1] David R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. (2) 128 (1988), no. 2, 385 – 398. · Zbl 0672.31008 · doi:10.2307/1971445
[2] Loukas Grafakos, On multilinear fractional integrals, Studia Math. 102 (1992), no. 1, 49 – 56. · Zbl 0808.42014
[3] M. A. Krasnosel’skii and Ya. B. Rutickii, Convex functions and Orlicz spaces, Groningen, 1961.
[4] Julian Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin, 1983. · Zbl 0557.46020
[5] M. M. Rao, Interpolation, ergodicity, and martingales, J. Math. Mech. 16 (1966), 543 – 567. · Zbl 0166.11704
[6] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501
[7] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. · Zbl 0232.42007
[8] Kôsaku Yosida, Functional analysis, 6th ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 123, Springer-Verlag, Berlin-New York, 1980.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.