×

Bilinear fractional integral operators on Morrey spaces. (English) Zbl 1462.42039

Summary: We prove a plethora of the boundedness property of Adams type for bilinear fractional integral operators of the form \[ B_{\alpha}(f,g)(x)=\int_{\mathbb{R}^n}\frac{f(x-y)g(x+y)}{|y|^{n-\alpha}}dy,\quad 0<\alpha<n. \] For \(1<t\le s<\infty\), we prove the non-weighted case through the known Adams type result. And we show that these results of Adams type is optimal. For \(0<t\le s<\infty\) and \(0<t\le 1\), we obtain new result of a weighted theory describing Morrey boundedness of above form operators if two weights \((v,\vec{w})\) satisfy \begin{align*} &[v,\vec{w}]_{t,\vec{q}/a}^{r,as}=\mathop{\sup_{Q,Q^{\prime }\in\mathscr{D}}}_{Q\subset Q^{\prime}}\left( \frac{|Q|}{|Q^{\prime }|}\right)^{\frac{1-s}{as}}|Q^{\prime}|^{\frac{1}{r}}\left(\diagup\!\!\!\!\!\!{\int}_Qv^{\frac{t}{1-t}}\right)^{\frac{1-t}{t}}\\&\quad \prod_{i=1}^2\left( \diagup\!\!\!\!\!\!{\int}_{Q^{\prime }}w_i^{-(q_i/a)^{\prime}}\right)^{\frac{1}{(q_i/a)^{\prime}}}<\infty ,\quad 0<t<s<1 \end{align*} and \begin{align*} &[v,\vec{w}]_{t,\vec{q}/{a}}^{r,as}:=\mathop{\sup_{Q,Q^{\prime}\in{\mathscr{D}}}}_{Q\subset Q^{\prime}}\left(\frac{|Q|}{|Q^{\prime}|}\right)^{\frac{1-as}{as}}|Q^{\prime}|^{\frac{1}{r}}\left(\diagup\!\!\!\!\!\!{\int}_Qv^{\frac{t}{1-t}}\right)^{\frac{1-t}{t}}\\&\quad \prod_{i=1}^2\left(\diagup\!\!\!\!\!\!{\int}_{Q^{\prime}}w_i^{-(q_i/a)^{\prime}}\right)^{\frac{1}{(q_i/a)^{\prime}}}<\infty, \quad s\ge 1, \end{align*} where \(\Vert v\Vert_{L^{\infty}(Q)}=\sup_Qv\) when \(t=1, a, r, s, t\) and \(\vec{q}\) satisfy proper conditions. As some applications we formulate a bilinear version of the Olsen inequality, the Fefferman-Stein type dual inequality and the Stein-Weiss inequality on Morrey spaces for fractional integrals.

MSC:

42B35 Function spaces arising in harmonic analysis
42B25 Maximal functions, Littlewood-Paley theory
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
47G10 Integral operators

References:

[1] Adams, DR, A note on Riesz potentials, Duke Math. J., 42, 765-778 (1975) · Zbl 0336.46038 · doi:10.1215/S0012-7094-75-04265-9
[2] Bak, J-G, An interpolation and a sharp form of a multilinear fractional integration theorem, Proc. Am. Math. Soc., 120, 2, 435-441 (1992) · Zbl 0801.42013 · doi:10.1090/S0002-9939-1994-1182696-X
[3] Chiarenza, F.; Frasca, M., Morrey spaces and Hardy-Littlewood maximal function, Rend. Math. Appl., 7, 273-279 (1987) · Zbl 0717.42023
[4] Ding, Y.; Lin, CC, Rough bilinear fractional integrals, Math. Nachr., 246-247, 1, 47-52 (2015) · Zbl 1055.42007 · doi:10.1002/1522-2616(200212)246:1<47::AID-MANA47>3.0.CO;2-7
[5] Grafakos, L., On multilinear fractional integtals, Stud. Math., 102, 1, 49-56 (1992) · Zbl 0808.42014 · doi:10.4064/sm-102-1-49-56
[6] Grafakos, L.; Kalton, N., Some remarks on multilinear maps and interpolation, Math. Ann., 319, 1, 151-180 (2001) · Zbl 0982.46018 · doi:10.1007/PL00004426
[7] Gunawan, H.; Eridani, Fractional integrals and generalized Olsen inequalities, Kyungpook Math. J., 49, 31-39 (2009) · Zbl 1181.26016 · doi:10.5666/KMJ.2009.49.1.031
[8] Gunawan, H.; Sawano, Y.; Sihwaningrum, I., Fractional integral operators in nonhomogeneous spaces, Bull. Aust. Math. Soc., 80, 324-334 (2009) · Zbl 1176.42012 · doi:10.1017/S0004972709000343
[9] Hoang, C., Moen, K.: Weighted estimates for bilinear fractional integral operators and their commutators. arXiv:1601.07590 · Zbl 1417.42016
[10] Iida, T.; Sato, E.; Sawano, Y.; Tanaka, H., Weighted norm inequalities for multilinear fractional operators on Morrey spaces, Stud. Math., 205, 139-170 (2011) · Zbl 1234.42012 · doi:10.4064/sm205-2-2
[11] Iida, T., A Characterization of a multiple weights class, Tokyo J. Math, 35, 2, 375-383 (2012) · Zbl 1266.42046 · doi:10.3836/tjm/1358951326
[12] Kenig, CE; Stein, EM, Multilinear estimates and fractional integration, Math. Res. Lett., 6, 1, 1-15 (1999) · Zbl 0952.42005 · doi:10.4310/MRL.1999.v6.n1.a1
[13] Kozono, H.; Yamazaki, M., Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data, Commun. Partial Differ. Equ., 19, 959-1014 (1994) · Zbl 0803.35068 · doi:10.1080/03605309408821042
[14] Kuk, SW; Lee, SY, Endpoint bounds for multilinear fractional integrals, Math. Res. Lett., 19, 5, 1145-1154 (2012) · Zbl 1271.42031 · doi:10.4310/MRL.2012.v19.n5.a15
[15] Mizuta, Y.; Shimomura, T., Weighted Morrey spaces of variable exponent and Riesz potentials, Math. Nachr., 288, 8-9, 984-1002 (2015) · Zbl 1318.31009 · doi:10.1002/mana.201400032
[16] Moen, K., Weighted inequalities for multilinear fractional integral operators, Collect. Math., 60, 213-238 (2009) · Zbl 1172.26319 · doi:10.1007/BF03191210
[17] Moen, K., New weighted estimates for Bilinear fractional integrals operators, Trans. Am. Math. Soc., 366, 2, 627-646 (2014) · Zbl 1286.42022 · doi:10.1090/S0002-9947-2013-06067-9
[18] Nakamura, S., Generalized weighted Morrey spaces and classical operators, Math. Nachr., 289, 17-18, 2235-2262 (2016) · Zbl 1355.42017 · doi:10.1002/mana.201500260
[19] Olsen, A., Fractional integration, Morrey spaces and a Schröndinger equation, Commun. Partial Differ. Equ., 20, 11-12, 2005-2055 (1995) · Zbl 0838.35017 · doi:10.1080/03605309508821161
[20] Peetre, J., On the theory of \(L^{p,\lambda }\) spaces, J. Funct. Anal., 4, 71-87 (1969) · Zbl 0175.42602 · doi:10.1016/0022-1236(69)90022-6
[21] Sawano, Y.; Sugano, S.; Tanaka, H., Generalized fractional integral operators and fractional maximal operators in the framework of Morrey spaces, Trans. Am. Math. Soc., 363, 12, 6481-6503 (2011) · Zbl 1229.42024 · doi:10.1090/S0002-9947-2011-05294-3
[22] Sawyer, E.; Wheeden, RL, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Am. J. Math., 114, 4, 813-874 (1992) · Zbl 0783.42011 · doi:10.2307/2374799
[23] Stein, EM; Weiss, G., Fractional integrals on \(n\)-dimensional Euclidean space, J. Math. Mech., 7, 503-514 (1958) · Zbl 0082.27201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.