×

Division algebras over Henselian fields. (English) Zbl 0692.16011

The authors develop a general valuation theory for finite dimensional division algebras over Henselian fields. More strictly, let k be a valued field and \({\mathcal D}\) be a finite dimensional central division algebra over it, \(v_{{\mathcal D}}^ a \)valuation on \({\mathcal D}\), \(\Gamma_{{\mathcal D}}\) the value group, V the valuation ring of \(v_{{\mathcal D}}\) and \(M_{{\mathcal D}}\) its maximal ideal, \(\bar {\mathcal D}=V_{{\mathcal D}}/M_{{\mathcal D}}\). The importance of the finite group \(\Gamma_{{\mathcal D}}/\Gamma_ k\) and the center \(Z(\bar {\mathcal D})\) of \(\bar {\mathcal D}\) (for any ring A Z(A) denotes the center of A) follows from the fundamental homomorphism \(\theta_{{\mathcal D}}: \Gamma_{{\mathcal D}}/\Gamma_{Z({\mathcal D})}\to G(Z(\bar D)/\overline{Z({\mathcal D})})\), where G(Z(\(\bar {\mathcal D})/\overline{Z({\mathcal D})})\) is the Galois group of the extension Z(\(\bar {\mathcal D})/\overline{Z({\mathcal D})}\) and \(\theta_{{\mathcal D}}\) is induced by conjugation by elements of \({\mathcal D}^*\). The authors prove that \(\theta_{{\mathcal D}}\) is surjective and Z(\(\bar {\mathcal D})\) is the compositum of an abelian Galois extension and a purely inseparable extension of \(\overline{Z({\mathcal D})}.\)
Suppose that for the rest of the review k is a Henselian field. The authors give a description of the subgroup of the Brauer group Br k of k which is represented by central inertial division algebras over k (one says that a division algebra \({\mathcal D}\) over k is inertial if [\({\mathcal D}:k]=[\bar {\mathcal D}:\bar k]\) and Z(\(\bar {\mathcal D})\) is separable over \(\bar k\)). Furthermore they prove that every division algebra \({\mathcal D}\) finite dimensional over k with Z(\(\bar {\mathcal D})\) separable over \(\bar k\) has an inertial subalgebra, i.e. a subalgebra B such that \(\bar B=\bar {\mathcal D}\) and \([B:k]=[\bar B:\bar k]\). In the paper there are some results about the division algebra \({\mathcal D}_ F\) which is similar to the algebra \({\mathcal D}\otimes_ kF\) where F is any inertial field extension of k. Then the authors consider the class of so-called nicely semiramified division algebras, (i.e., subalgebras which have a maximal subfield inertial over k and another maximal subfield totally ramified over k). It is proved that each such algebra is a tensor product of nicely semiramified algebras.
The next object of consideration is inertially split algebras, i.e. algebras which have a maximal subfield inertial over k. It is proved in the paper that every inertially split division algebra \({\mathcal D}\) is similar to \(B\otimes_ kN\) where B is inertial over k and N is nicely semiramified. After these preliminary considerations the authors attack the problem of investigation of tame division algebras. They show that every such algebra is similar to \(S\otimes_ kT\), where S is inertially split and T is totally ramified over k. Furthermore they prove that \(\Gamma_{{\mathcal D}}=\Gamma_ S+\Gamma_ T\) and show how Z(\(\bar {\mathcal D})\) and \(\theta_{{\mathcal D}}\) are connected with \(Z(\bar S)\), \(\theta_ s\) and \(\Gamma_ S\cap \Gamma_ T\). At the end of the paper some interesting examples are given.
Remark. Some results of the paper were obtained independently by V. P. Platonov and the reviewer [in their papers Dokl. Akad. Nauk SSSR 297, 294-298 (1987); English transl. in Sov. Math., Dokl. 36, 468-472 (1988; Zbl 0667.16018) and ibid. 297, 542-547 (1987); English transl. in ibid. 36, 502-506 (1988; Zbl 0669.16016)]. In these papers there are also other results about Henselian division algebras including a complete classification of Henselian tame division algebras.
Reviewer: V.Yanchevskij

MSC:

16K20 Finite-dimensional division rings
16P10 Finite rings and finite-dimensional associative algebras
12E15 Skew fields, division rings
11R52 Quaternion and other division algebras: arithmetic, zeta functions
16W20 Automorphisms and endomorphisms
16D70 Structure and classification for modules, bimodules and ideals (except as in 16Gxx), direct sum decomposition and cancellation in associative algebras)
Full Text: DOI

References:

[1] Albert, A. A., On the Wedderburn norm condition for cyclic algebras, Bull. Amer. Math. Soc., 37, 301-312 (1931) · Zbl 0001.26701
[2] Albert, A. A., Structure of Algebras, (Amer. Math. Soc. Colloq. Pub., Vol. 24 (1961)), Providence, RI · Zbl 0029.01003
[3] Amitsur, S. A., On central division algebras, Israel J. Math., 12, 408-420 (1972) · Zbl 0248.16006
[4] Amitsur, S. A.; Rowen, L. H.; Tignol, J.-P, Division algebras of degree 4 and 8 with involution, Israel J. Math., 33, 133-148 (1979) · Zbl 0422.16010
[5] Amitsur, S. A.; Saltman, D., Generic abelian crossed products and \(p\)-algebras, J. Algebra, 51, 76-87 (1978) · Zbl 0391.13001
[6] Azumaya, G., On maximally central algebras, Nagoya J. Math., 2, 119-150 (1951) · Zbl 0045.01103
[7] (Cassels, J. W.S; Fröhlich, A., Algebraic Number Theory (1967), Academic Press: Academic Press London) · Zbl 0153.07403
[8] Demeyer, F.; Ingraham, E., Separable Algebras over Commutative Rings, (Lecture Notes in Math., Vol. 181 (1971), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0215.36602
[9] Dickson, L. E., Algebras and their Arithmetics (1923), Dover Publications: Dover Publications New York · JFM 49.0079.01
[10] Draxl, P., Skew Fields, (London Math. Soc. Lecture Note Series, Vol. 81 (1983), Cambridge Univ. Press: Cambridge Univ. Press Cambridge) · Zbl 0498.16015
[11] Draxl, P., Ostrowski’s theorem for Henselian valued skew fields, J. Reine Angew. Math., 354, 213-218 (1984) · Zbl 0536.12018
[12] (Draxl, P.; Kneser, M., \( SK_1\) von Schiefkörpern. \( SK_1\) von Schiefkörpern, Lecture Notes in Math., Vol. 778 (1980), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0426.16022
[13] Endler, O., Valuation Theory (1972), Springer-Verlag: Springer-Verlag New York · Zbl 0257.12111
[14] Ershov, Yu. L., Math. USSR Sb., 45, 63-71 (1983), (English trans.) · Zbl 0514.16013
[15] Ershov, Yu. L., Valued division rings, (Fifth All Union Symposium, Theory of Rings, Algebras and Modules (1982), Akad. Nauk SSR Sibirsk. Otdel, Inst. Mat: Akad. Nauk SSR Sibirsk. Otdel, Inst. Mat Novosibirsk), 53-55, [Russian]
[16] Hasse, H., Über \(p\)-adische Schiefkörper und ihre Bedeutung für die Arithmetik hyperkomplexer Zahlsysteme, Math. Ann., 104, 495-534 (1931) · JFM 57.0157.02
[17] Jehne, W., Separable adel algebras and a presentation of Weil groups, J. Reine Angew. Math., 375/376, 211-237 (1987) · Zbl 0601.12018
[18] Jacob, B.; Wadsworth, A., A new construction of noncrossed product algebras, Trans. Amer. Math. Soc., 293, 693-721 (1986) · Zbl 0597.16016
[19] Knus, M.; Ojanguren, M., Théorie de la Descente et Algèbres d’Azumaya, (Lecture Notes in Math., Vol. 389 (1974), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0284.13002
[20] Kursov, V. V.; Yanchevskiǐ, V. I., Crossed products over simple algebras and their automorphism groups, Akad. Nauk Belo. Inst. Math., preprint #35 (305) (Nov. 1987), [Russian]
[21] Mathiak, K., Valuations of Skew Fields and Projective Hjelmslev Spaces, (Lecture Notes in Math., Vol. 1175 (1986), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0585.12017
[22] Merkurjev, A. S., Math. USSR Izv., 27, 141-157 (1986), (English trans.) · Zbl 0598.12022
[23] Milnor, J., Introduction to Algebraic \(K\)-theory, (Annals of Math. Studies (1971), Princeton Univ. Press: Princeton Univ. Press Princeton), No. 72 · Zbl 0237.18005
[24] Morandi, P., The Henselization of a valued division algebra, J. Algebra, 122, 232-243 (1989) · Zbl 0676.16017
[25] Nakayama, T., Divisionsalgebren über diskret bewerteten perfekten Körpern, J. Reine Angew. Math., 178, 11-13 (1938) · JFM 63.0094.02
[26] Pierce, R. S., Associative Algebras (1982), Springer-Verlag: Springer-Verlag New York · Zbl 0497.16001
[27] Platonov, V. P., Math. USSR Izv., 10, 211-243 (1976), (English trans.) · Zbl 0349.16008
[28] Platonov, V. P.; Yanchevskiǐ, V. I., Math. USSR Izv., 25, 573-599 (1985), (English trans.) · Zbl 0593.16012
[29] Platonov, V. P.; Yanchevskiǐ, V. I., Soviet Math. Doklady, 36, 468-472 (1988), (English trans.) · Zbl 0667.16018
[30] Platonov, V. P.; Yanchevskiǐ, V. I., Soviet Math. Doklady, 36, 502-506 (1988), (English trans.) · Zbl 0669.16016
[31] Reiner, I., Maximal Orders (1975), Academic Press: Academic Press London · Zbl 0305.16001
[32] Ribenboim, P., Equivalent forms of Hensel’s lemma, Exposition. Math., 3, 3-24 (1985) · Zbl 0558.12014
[33] Rowen, L. H., Polynomial Identities in Ring Theory (1980), Academic Press: Academic Press New York · Zbl 0461.16001
[34] Rowen, L. H., Israel J. Math., 43, 277-280 (1982), (English trans.) · Zbl 0523.16012
[35] Saltman, D., Noncrossed products of small exponents, (Proc. Amer. Math. Soc., 68 (1978)), 165-168 · Zbl 0382.16010
[36] Saltman, D., The Brauer group and the center of generic matrices, J. Algebra, 97, 53-67 (1985) · Zbl 0586.13005
[37] Scharlau, W., Über die Brauer-Gruppe eines Henselkörpers, (Abh. Math. Sem. Univ. Hamburg, 33 (1969)), 243-249 · Zbl 0179.07804
[38] Schilling, O. F.G, The Theory of Valuations, (Math. Surveys, No. 4 (1950), Amer. Math. Soc: Amer. Math. Soc Providence, R.I) · Zbl 0037.30702
[39] Serre, J.-P, Cohomologie Galoisienne, (Lecture Notes in Math, Vol. 5 (1965), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0812.12002
[40] Serre, J.-P, Local Fields (1979), Springer-Verlag: Springer-Verlag New York, (English trans. of “Corps Locaux”) · Zbl 0423.12016
[41] Tignol, J.-P, Produits croisés abéliens, J. Algebra, 70, 420-436 (1981) · Zbl 0473.16004
[42] Tignol, J.-P, Cyclic and elementary abelian subfields of Malcev-Neumann division algebras, J. Pure Appl. Algebra, 42, 199-220 (1986) · Zbl 0602.16020
[43] Tignol, J.-P, Algèbres indécomposable d’exposant premier, Adv. in Math., 65, 205-228 (1987) · Zbl 0642.16015
[44] Tignol, J.-P, Generalized crossed products, (Seminaire Mathématique (nouvelle série), No. 106 (1987), Université Catholique de Louvain: Université Catholique de Louvain Louvain-la-Neuve, Belgium) · Zbl 0558.16010
[45] Tignol, J.-P; Amitsur, S. A., Kummer subfields of Malcev-Neumann division algebras, Israel J. Math., 50, 114-144 (1985) · Zbl 0564.16015
[46] Tignol, J.-P; Amitsur, S. A., Totally ramified splitting fields of central simple algebras over Henselian fields, J. Algebra, 98, 95-101 (1986) · Zbl 0588.16011
[47] Tignol, J.-P; Wadsworth, A., Totally ramified valuations on finite dimensional division algebras, Trans. Amer. Math. Soc., 302, 223-250 (1987) · Zbl 0626.16005
[48] Wadsworth, A., Extending valuations to finite dimensional division algebras, (Proc. Amer. Math. Soc., 98 (1986)), 20-22 · Zbl 0601.12028
[49] Wadsworth, A., The residue ring of a valued division algebra, Bull. Soc. Math. Bel. Sér. A, 40, 307-322 (1988) · Zbl 0658.12015
[50] Wedderburn, J. H.M, On division algebras, Trans. Amer. Math. Soc., 22, 129-135 (1921) · JFM 48.0126.01
[51] Witt, E., Schiefkörper über diskret bewerteten Körpern, J. Reine Angew. Math., 176, 153-156 (1937) · JFM 62.1112.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.