×

Sparse Aitken-Schwarz domain decomposition with application to Darcy flow. (English) Zbl 1521.65134

Summary: This paper focuses on the acceleration of the Schwarz method by the Aitken’s acceleration of the convergence technique by considering the special structure of the Schwarz’s error operator between two consecutive iterates on the domain decomposition’s interfaces. The new proposed method, called Sparse Aitken-Schwarz method, builds a low-rank space for each subdomain to approximate the true solution on its interfaces instead of building a low-rank space associated to the gathered subdomains’ interfaces solution as the Aitken-Schwarz technique does. We show that the resulting method is better than the full GMRES method applied to the global interface problem as the low-rank space generated is a space whose dimension is larger than the size of Krylov space for the same number of local solving. The Sparse Aitken-Schwarz has better robustness to noise than the Aitken-Schwarz. Weak and strong scaling results on a two-level parallel implementation show the improvements of the Sparse Aitken-Schwarz over the Aitken-Schwarz on a 3D Darcy flow application with randomly distributed permeability fields with high contrast values [the first author et al., Comput. Fluids 80, 320–326 (2013; Zbl 1284.76349)].

MSC:

65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
76E06 Convection in hydrodynamic stability

Citations:

Zbl 1284.76349

Software:

PETSc
Full Text: DOI

References:

[1] Saad, Y.; Schultz, M. H., GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM J Sci Stat Comput, 7, 3, 856-869 (1986) · Zbl 0599.65018
[2] Deparis, S.; Grandperrin, G.; Quarteroni, A., Parallel preconditioners for the unsteady Navier-Stokes equations and applications to hemodynamics simulations, Comput Fluids, 92, 253-273 (2014) · Zbl 1391.76887
[3] Cai, X.-C.; Sarkis, M., A restricted additive Schwarz preconditioner for general sparse linear systems, SIAM J Sci Comput, 21, 2, 792-797 (1999) · Zbl 0944.65031
[4] Mittal, K.; Dutta, S.; Fischer, P., Nonconforming Schwarz-spectral element methods for incompressible flow, Comput Fluids, 191 (2019) · Zbl 1519.76231
[5] Lions, P.-L., On the Schwarz alternating method. I, (First international symposium on domain decomposition methods for partial differential equations (Paris, 1987) (1988), SIAM: SIAM Philadelphia, PA), 1-42 · Zbl 0658.65090
[6] Lions, P.-L., On the Schwarz alternating method. III. a variant for nonoverlapping subdomains, (Third international symposium on domain decomposition methods for partial differential equations (Houston, TX, 1989) (1990), SIAM: SIAM Philadelphia, PA), 202-223 · Zbl 0704.65090
[7] Liang, S.; Zhang, J.; Liu, X.-Z.; Hu, X.-D.; Yuan, W., Domain decomposition based exponential time differencing method for fluid dynamics problems with smooth solutions, Comput Fluids, 194 (2019) · Zbl 1458.76070
[8] Have, P.; Masson, R.; Nataf, F.; Szydlarski, M.; Xiang, H.; Zhao, T., Algebraic domain decomposition methods for highly heterogeneous problems, SIAM J Sci Comput, 35, 3, C284-C302 (2013) · Zbl 1278.65189
[9] Berenguer, L.; Dufaud, T.; Tromeur-Dervout, D., Aitken’s acceleration of the Schwarz process using singular value decomposition for heterogeneous 3D groundwater flow problems, Comput Fluids, 80, SI, 320-326 (2013) · Zbl 1284.76349
[10] Brakkee, E.; Wesseling, P.; Kassels, C., Schwarz domain decomposition for the incompressible Navier-Stokes equations in general co-ordinates, Int J Numer Methods Fluids, 32, 2, 141-173 (2000) · Zbl 0965.76049
[11] Amestoy, P.; Ashcraft, C.; Boiteau, O.; Buttari, A.; L’Excellent, J.-Y.; Weisbecker, C., Improving multifrontal methods by means of block low-rank representations, SIAM J Sci Comput, 37, 3, A1451-A1474 (2015) · Zbl 1314.05111
[12] Nataf, F.; Xiang, H.; Dolean, V.; Spillane, N., A coarse space construction based on local Dirichlet-to-Neumann maps, SIAM J Sci Comput, 33, 4, 1623-1642 (2011) · Zbl 1230.65134
[13] Spillane, N.; Dolean, V.; Hauret, P.; Nataf, F.; Pechstein, C.; Scheichl, R., A robust two-level domain decomposition preconditioner for systems of PDEs, C R Acad Sci Paris Sér I Math, 349, 23-24, 1255-1259 (2011) · Zbl 1252.65201
[14] Dolean, V.; Jolivet, P.; Nataf, F.; Spillane, N.; Xiang, H., Two-level domain decomposition methods for highly heterogeneous Darcy equations. Connections with multiscale methods, Oil Gas Sci Technol - Rev IFP Energies Nouvelles, 69, 4, 731-752 (2014)
[15] Nataf, F., Mathematical analysis of robustness of two-level domain decomposition methods with respect to inexact coarse solves, Numer Math, 144, 4, 811-833 (2020) · Zbl 1484.65323
[16] Spillane, N.; Dolean, V.; Hauret, P.; Nataf, F.; Pechstein, C.; Scheichl, R., Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps, Numer Math, 126, 4, 741-770 (2014) · Zbl 1291.65109
[17] Haferssas, R.; Jolivet, P.; Nataf, F., A robust coarse space for optimized Schwarz methods: SORAS-GenEO-2, C R Acad Sci Paris Sér I Math, 353, 10, 959-963 (2015) · Zbl 1327.65241
[18] Xiang, H.; Nataf, F., Two-level algebraic domain decomposition preconditioners using Jacobi-Schwarz smoother and adaptive coarse grid corrections, J Comput Appl Math, 261, 1-13 (2014) · Zbl 1280.65031
[19] Al Daas, H.; Grigori, L.; Jolivet, P.; Tournier, P.-H., A multilevel Schwarz preconditioner based on a hierarchy of robust coarse spaces, SIAM J Sci Comput, 43, 3, A1907-A1928 (2021) · Zbl 1512.65289
[20] Alcin, H.; Koobus, B.; Allain, O.; Dervieux, A., Efficiency and scalability of a two-level Schwarz algorithm for incompressible and compressible flows, Int J Numer Methods Fluids, 72, 1, 69-89 (2013) · Zbl 1455.76156
[21] Chevalier, P.; Nataf, F., An optimized order 2 (OO2) method for the Helmholtz equation, C R Acad Sci Paris Sér I Math, 326, 6, 769-774 (1998) · Zbl 0910.65085
[22] Gerardo-Giorda, L.; Nataf, F., Optimized Schwarz methods for unsymmetric layered problems with strongly discontinuous and anisotropic coefficients, J Numer Math, 13, 4, 265-294 (2005) · Zbl 1092.65112
[23] Gander, M. J.; Magoulès, F.; Nataf, F., Optimized Schwarz methods without overlap for the Helmholtz equation, SIAM J Sci Comput, 24, 1, 38-60 (electronic) (2002) · Zbl 1021.65061
[24] Haferssas, R.; Jolivet, P.; Nataf, F., An additive Schwarz method type theory for Lion’s algorithm and a symmetrized optimized restricted additive Schwarz method, SIAM J Sci Comput, 39, 4, A1345-A1365 (2017) · Zbl 1371.65129
[25] Martin, V., An optimized Schwarz waveform relaxation method for the unsteady convection diffusion equation in two dimensions, Comput Fluids, 33, 5-6, 829-837 (2004) · Zbl 1100.76552
[26] Garbey, M.; Tromeur-Dervout, D., On some Aitken-like acceleration of the Schwarz method, Int J Numer Methods Fluids, 40, 12, 1493-1513 (2002) · Zbl 1025.76043
[27] Barberou, N.; Garbey, M.; Hess, M.; Resch, M.; Rossi, T.; Toivanen, J.; Tromeur-Dervout, D., Efficient metacomputing of elliptic linear and non-linear problems, J Parallel Distrib Comput, 63, 5, 564-577 (2003) · Zbl 1055.68150
[28] Garbey, M., Acceleration of the Schwarz method for elliptic problems, SIAM J Sci Comput, 26, 6, 1871-1893 (2005) · Zbl 1081.65116
[29] Ltaief, H.; Garbey, M., A parallel Aitken-additive Schwarz waveform relaxation suitable for the grid, Parallel Comput, 35, 7, 416-428 (2009)
[30] Baranger, J.; Garbey, M.; Oudin-Dardun, F., The Aitken-like acceleration of the Schwarz method on nonuniform cartesian grids, SIAM J Sci Comput, 30, 5, 2566-2586 (2008) · Zbl 1177.65167
[31] Tromeur-Dervout, D., Meshfree adaptative Aitken-Schwarz domain decomposition with application to Darcy flow, (Topping, B.; Ivanyi, P., Parallel, distributed and grid computing for engineering. Parallel, distributed and grid computing for engineering, Computational science engineering and technology series, vol. 21 (2009), Saxe-Coburg Publications, Stirlingshire, UK), 217-250
[32] Linel, P.; Tromeur-Dervout, D., Analysis of the time-Schwarz DDM on the heat PDE, Comput Fluids, 80, SI, 94-101 (2013) · Zbl 1284.65128
[33] Tromeur-Dervout D. Approximating the trace of iterative solutions at the interfaces with nonuniform Fourier transform and singular value decomposition for cost-effectively accelerating the convergence of Schwarz domain decomposition. In: ESAIM: Proc. Vol. 42. 2013, p. 34-60. http://dx.doi.org/10.1051/proc/201342004. · Zbl 1329.76278
[34] Walker, E.; Nikitopoulos, D.; Tromeur-Dervout, D., Parallel solution methods for Poisson-like equations in two-phase flows, Comput Fluids, 80, SI, 152-157 (2013)
[35] Henrici, P., Elements of numerical analysis, xv+328 (1964), John Wiley & Sons Inc.: John Wiley & Sons Inc. New York · Zbl 0149.10901
[36] Gander, M. J., Schwarz methods over the course of time, Electron Trans Numer Anal, 228-255 (2008) · Zbl 1171.65020
[37] Wilders, P.; Brakkee, E., Schwarz and Schur: An algebraical note on equivalence properties, SIAM J Sci Comput, 20, 6, 2297-2303 (1999) · Zbl 0935.65025
[38] Stewart, G. W., On the early history of the singular value decomposition, SIAM Rev, 35, 4, 551-566 (1993) · Zbl 0799.01016
[39] Vuik C. Krylov Subspace Solvers and Preconditioners. In: ESAIM: proc. Vol. 63. 2018, p. 1-43. http://dx.doi.org/10.1051/proc/201863001. · Zbl 1406.65021
[40] Giraud, L.; Haidar, A.; Saad, Y., Sparse approximations of the Schur complement for parallel algebraic hybrid solvers in 3D, Numer Math Theor Methods Appl, 3, 3, 276-294 (2010) · Zbl 1240.65093
[41] Nataf, F.; Xiang, H.; Dolean, V.; Spillane, N., A coarse space construction based on local Dirichlet-to-Neumann maps, SIAM J Sci Comput, 33, 4, 1623-1642 (2011) · Zbl 1230.65134
[42] Balay, S.; Brown, J.; Buschelman, K.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; McInnes, L. C.; Smith, B. F.; Zhang, H., PETSc users manualTech. rep. ANL-95/11 - Revision 3.3 (2012), Argonne National Laboratory
[43] Engquist, B.; Zhao, H.-K., Absorbing boundary conditions for domain decomposition, Appl Numer Math, 27, 4, 341-365 (1998), Absorbing boundary conditions · Zbl 0935.65135
[44] Wheeler, M.; Xue, G.; Yotov, I., A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra, Numer Math, 121, 1, 165-204 (2012) · Zbl 1277.65100
[45] Hackbusch, W., A sparse matrix arithmetic based on H-matrices. Part I : Introduction to H-matrices, Computing, 62, 2, 89-108 (1999) · Zbl 0927.65063
[46] Borm, S.; Grasedyck, L.; Hackbusch, W., Introduction to hierarchical matrices with applications, Eng Anal Bound Elem, 27, 5, 405-422 (2003) · Zbl 1035.65042
[47] Pardo-Igúzquiza, E.; Chica-Olmo, M., The Fourier integral method: an efficient spectral method for simulation of random fields, Math Geol, 25, 177-216 (1993)
[48] Keyes, D.; Ltaief, H.; Nakatsukasa, Y.; Sukkari, D., High-performance partial spectrum computation for symmetric eigenvalue problems and the SVD (2021), arXiv:2104.14186
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.