×

An integrable (classical and quantum) four-wave mixing Hamiltonian system. (English) Zbl 1454.81085

Summary: A four-wave mixing Hamiltonian system on the classical as well as on the quantum level is investigated. In the classical case, if one assumes the frequency resonance condition of the form \(\omega_0 - \omega_1 + \omega_2 - \omega_3 = 0\), this Hamiltonian system is integrated in quadratures, and the explicit formulas of solutions are presented. Under the same condition, the spectral decomposition of quantum Hamiltonian is found, and thus, the Heisenberg equation for this system is solved. Some applications of the obtained results in non-linear optics are discussed.
©2020 American Institute of Physics

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
70H05 Hamilton’s equations
81S08 Canonical quantization
53D17 Poisson manifolds; Poisson groupoids and algebroids
78A60 Lasers, masers, optical bistability, nonlinear optics
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81V80 Quantum optics

References:

[1] Boyd, R. W., Nonlinear Optics (2008), Academic Press
[2] Imamoglu, A.; Lukin, M. D., Nonlinear Optics and quantum entanglement of ultraslow single photons, Phys. Rev. Lett., 84, 7, 1419 (2000) · doi:10.1103/physrevlett.84.1419
[3] Peng, J.-S.; Li, G.-X., Introduction to Modern Quantum Optics (1998), World Scientific Publishing Co. Pte. Ltd.: World Scientific Publishing Co. Pte. Ltd., Singapore · Zbl 0997.81623
[4] Milburn, W.; Walls, D. F., Quantum Optics (1994), Springer-Verlag · Zbl 1138.81586
[5] Skrypnyk, T., Integrability and superintegrability of the generalized n-level many-mode Jaynes-Cummings and Dicke models, J. Math. Phys., 50, 103523 (2009) · Zbl 1283.81084 · doi:10.1063/1.3205453
[6] Perina, J., Quantum Statistics of Linear and Nonlinear Optical Phenomena (1984), D. Reidel Publishing Company: D. Reidel Publishing Company, Prague
[7] Jurco, B., On quantum integrable models related to nonlinear quantum optics. An algebraic Bethe ansatz approach, J. Math. Phys., 30, 1739 (1989) · Zbl 0685.46052 · doi:10.1063/1.528262
[8] Skrypnyk, T., Generalized n-level Jaynes-Cummings and Dicke models, classical rational r-matrices and algebraic Bethe ansatz, J. Phys. A: Math. Theor., 41, 475202 (2008) · Zbl 1153.81020 · doi:10.1088/1751-8113/41/47/475202
[9] Fleischhauer, M.; Johnsson, M. T., Quantum theory of resonantly enhanced four-wave mixing: Mean-field and exact numerical solutions, Phys. Rev. A, 66, 043808 (2002) · doi:10.1103/physreva.66.043808
[10] Babelon, O.; Douçot, B., Classical Bethe ansatz and normal forms in an integrable version of a Dicke model, Physica D, 241, 2095 (2012) · Zbl 1263.82016 · doi:10.1016/j.physd.2012.03.009
[11] Ahmad, R.; Dot, A.; Jennewein, T.; Meyer-Scott, E.; Rochette, M., Converting one photon into two via four-wave mixing in optical fibers, Phys. Rev. A, 90, 043808 (2014) · doi:10.1103/physreva.90.043808
[12] Akhmadova, A. R.; Amirov, S. S.; Kasumova, R. J.; Safarova, G. A., Optics and spectroscopy, Four-wave mixing in metamaterials, Russ. Phys. J., 61, 9, 1559 (2019) · doi:10.1007/s11182-018-1572-6
[13] Alber, M. S.; Luther, G. G.; Marsden, J. E.; Robbins, J. M., Geometry and control of three-wave interactions, The Arnoldfest (Toronto, ON, 1997), 55-80 (1999), AMS: AMS, Providence, RI · Zbl 0988.37079
[14] Alber, M. S.; Luther, G. G.; Marsden, J. E.; Robbins, J. M., Geometric phases, reduction and Lie-Poisson structure for the resonant three-wave interaction, Physica D, 123, 271-290 (1998) · Zbl 1038.37510 · doi:10.1016/s0167-2789(98)00127-4
[15] Alber, M. S.; Luther, G. G.; Marsden, J. E.; Robbins, J. M., Geometric analysis of optical frequency conversion and its control in quadratic nonlinear media, J. Opt. Soc. Am. B, 17, 6, 932 (2000) · doi:10.1364/josab.17.000932
[16] Babelon, O.; Cantini, L.; Douçot, B., A semi-classical study of the Jaynes-Cummings model, J. Stat. Mech.: Theory Exp., 2009, P07011 · Zbl 1456.81187 · doi:10.1088/1742-5468/2009/07/p07011
[17] Armstrong, J. A.; Bloembergen, N.; Ducuing, J.; Pershan, P. S., Interactions between light waves in nonlinear dieletric, Phys. Rev., 127, 6, 1918 (1962) · doi:10.1103/physrev.127.1918
[18] Chadzitaskos, G.; Horowski, M.; Jex, I.; Odzijewicz, A.; Tereszkiewicz, A., Explicitly solvable models of a two-mode coupler in Kerr media, Phys. Rev. A, 75, 6, 063817 (2007) · doi:10.1103/physreva.75.063817
[19] Goliński, T.; Odzijewicz, A.; Tereszkiewicz, A., Coherent state maps related to the bounded positive operators, J. Math. Phys., 48, 12, 123514 (2007) · Zbl 1153.81416 · doi:10.1063/1.2821615
[20] Tan, K.; Menotti, M.; Vernon, Z.; Sipe, J. E.; Liscidini, M.; Morrison, B., Stimulated four-wave mixing in linearly uncoupled resonators, Opt. Lett., 45, 4, 873-876 (2020) · doi:10.1364/ol.381563
[21] Goliński, T.; Horowski, M.; Odzijewicz, A.; Sliżewska, A., symmetry and solvable multiboson system, J. Math. Phys., 48, 2, 023508 (2007) · Zbl 1121.81061 · doi:10.1063/1.2409525
[22] Horowski, M.; Odzijewicz, A.; Tereszkiewicz, A., Integrable multi-boson systems and orthogonal polynomials, J. Phys. A Math. Gen., 34, 20, 4335-4376 (2001) · Zbl 0978.81084 · doi:10.1088/0305-4470/34/20/308
[23] Horowski, M.; Odzijewicz, A.; Tereszkiewicz, A., Some integrable systems in nonlinear quantum optics, J. Math. Phys., 44, 2, 480-506 (2003) · Zbl 1061.81083 · doi:10.1063/1.1530756
[24] Horowski, M.; Chadzitaskos, G.; Odzijewicz, A.; Tereszkiewicz, A., Systems with intensity-dependent conversion integrable by finite orthogonal polynomials, J. Phys. A Math. Gen., 37, 23, 6115-6128 (2004) · Zbl 1108.81056 · doi:10.1088/0305-4470/37/23/010
[25] Odzijewicz, A.; Wawreniuk, E., Classical and quantum Kummer shape algebras, J. Phys. A Math. Theor., 49, 26, 1-33 (2016) · Zbl 1353.81077 · doi:10.1088/1751-8113/49/26/265202
[26] Odzijewicz, A.; Wawreniuk, E., Integrability and correspondence of classical and quantum non-linear three-mode system, J. Math. Phys., 59, 4, 1-17 (2018) · Zbl 1386.81093 · doi:10.1063/1.5024043
[27] Gradshteyn, I. S.; Ryzhik, I. M.; Jeffrey, A.; Zwillinger, D., Table of Integrals, Series, and Products (2007), Academic Press: Academic Press, New York · Zbl 1208.65001
[28] Holm, D. D., Geometric Mechanics, Part I: Dynamics and Symmetry (2008), Imperial College Press: Imperial College Press, London · Zbl 1160.70001
[29] McKinstrie, C. J.; Ott, J. R.; Rottwitt, K.; Steffensen, H., Geometric interpretation of four-wave mixing, Phys. Rev. A, 88, 043805 (2013) · doi:10.1103/physreva.88.043805
[30] Goliński, T.; Odzijewicz, A., Hierarchy of integrable Hamiltonians describing the nonlinear n-wave interaction, J. Phys. A Math. Theor., 45, 4, 045204 (2012) · Zbl 1247.78030 · doi:10.1088/1751-8113/45/4/045204
[31] Chihara, T. S., An Introduction to Orthogonal Polynomials (1978), Gordon & Breach: Gordon & Breach, New York · Zbl 0389.33008
[32] Koekoek, R.; Swarttouw, R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue (1998), TUDelft
[33] Odzijewicz, A., Coherent states and geometric quantization, Commun. Math. Phys., 150, 2, 385-413 (1992) · Zbl 0768.58022 · doi:10.1007/bf02096666
[34] Garraway, B. M., The Dicke model in quantum optics: Dicke model revisted, Philos. Trans. R. Soc. A, 369, 1137-1155 (2011) · Zbl 1219.81283 · doi:10.1098/rsta.2010.0333
[35] Arecchi, F. T.; Courtnes, E.; Gilmore, R.; Thomas, H., Atmonic coherent states in quantum optics, Phys. Rev. A, 6, 6, 2211 (1972) · doi:10.1103/physreva.6.2211
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.