×

Integrability and superintegrability of the generalized \(n\)-level many-mode Jaynes-Cummings and Dicke models. (English) Zbl 1283.81084

Summary: We analyze symmetries of the integrable generalizations of Jaynes-Cummings and Dicke models associated with simple Lie algebras \(\mathfrak g\) and their reductive subalgebras \(\mathfrak g_K\) [the author, J. Phys. A, Math. Theor. 41, No. 47, 475202, 21 p. (2008; Zbl 1153.81020)]. We show that their symmetry algebras contain commutative subalgebras isomorphic to the Cartan subalgebras of \(\mathfrak g\), which can be added to the commutative algebras of quantum integrals generated with the help of the quantum Lax operators. We diagonalize additional commuting integrals and constructed with their help the most general integrable quantum Hamiltonian of the generalized \(n\)-level many-mode Jaynes-Cummings and Dicke-type models using nested algebraic Bethe ansatz. {
©2009 American Institute of Physics}

MSC:

81R12 Groups and algebras in quantum theory and relations with integrable systems
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37N20 Dynamical systems in other branches of physics (quantum mechanics, general relativity, laser physics)
81V80 Quantum optics

Citations:

Zbl 1153.81020
Full Text: DOI

References:

[1] Heitler W., The Quantum Theory of Radiation (1954) · Zbl 0055.21603
[2] Allen N., Optical Resonance and Two-Level Atoms (1975)
[3] DOI: 10.1109/PROC.1963.1664 · doi:10.1109/PROC.1963.1664
[4] DOI: 10.1103/PhysRev.93.99 · Zbl 0055.21702 · doi:10.1103/PhysRev.93.99
[5] Gaudin M., La Fonction d’Onde de Bethe (1983)
[6] DOI: 10.1063/1.528262 · Zbl 0685.46052 · doi:10.1063/1.528262
[7] DOI: 10.1103/PhysRevA.35.1634 · doi:10.1103/PhysRevA.35.1634
[8] DOI: 10.1016/0375-9601(84)90379-7 · doi:10.1016/0375-9601(84)90379-7
[9] Li X., Phys. Lett. 101 pp 1087– (1984)
[10] DOI: 10.3842/SIGMA.2006.069 · Zbl 1133.81373 · doi:10.3842/SIGMA.2006.069
[11] DOI: 10.1051/jphys:0197600370100108700 · doi:10.1051/jphys:0197600370100108700
[12] DOI: 10.1007/BF01081801 · Zbl 0498.32010 · doi:10.1007/BF01081801
[13] Reyman A. G., VINITI: Fundam. Trends 6 pp 145– (1989)
[14] DOI: 10.1088/0305-4470/16/16/001 · Zbl 0545.35082 · doi:10.1088/0305-4470/16/16/001
[15] DOI: 10.1063/1.528305 · Zbl 0692.58015 · doi:10.1063/1.528305
[16] Tahdadjan L., Hamiltonian Approach in the Theory of Solitons (1986)
[17] DOI: 10.1007/s10688-006-0012-5 · Zbl 1111.82015 · doi:10.1007/s10688-006-0012-5
[18] DOI: 10.4213/rm944 · doi:10.4213/rm944
[19] DOI: 10.1088/1751-8113/41/47/475202 · Zbl 1153.81020 · doi:10.1088/1751-8113/41/47/475202
[20] Helgason S., Differential Geometry and Symmetric Spaces (1962) · Zbl 0111.18101
[21] DOI: 10.1023/A:1007585716273 · Zbl 1055.82508 · doi:10.1023/A:1007585716273
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.