×

Solving steady-state lid-driven square cavity flows at high Reynolds numbers via a coupled improved element-free Galerkin-reduced integration penalty method. (English) Zbl 1524.76207

Summary: Steady-state two-dimensional lid-driven square cavity flows at high Reynolds numbers are solved in this communication using a velocity-based formulation developed in the context of the improved element-free Galerkin-reduced integration penalty method (IEFG-RIPM). The analyses based on the IEFG-RIPM are performed under a standard Galerkin weak-formulation, i.e. without the need of introducing streamline-upwind or pressure stabilizing terms in order to suppress the appearance of non-physical oscillations. Solutions in a wide range of high Reynolds numbers are successfully achieved, and the results obtained have exhibited an excellent agreement with mesh-based solutions reported in the literature. The numerical performance of the proposed IEFG-RIPM in the solution of such benchmark problem has been analysed in terms of velocity distribution, streamline patterns, vorticity and pressure contours, and also in terms of the properties of primary and secondary vortices. The outcomes of this study demonstrate the potential of the IEFG-RIPM as a feasible and reliable numerical technique for the analysis of lid-driven square cavity flows at high Reynolds numbers, allowing the fulfilment of accuracy and stability numerical requirements demanded in the solution of this benchmark problem in a remarkably simple manner.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76M20 Finite difference methods applied to problems in fluid mechanics

Software:

FEAPpv
Full Text: DOI

References:

[1] Ghia, U.; Ghia, K. N.; Shin, C. T., High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 3, 387-411 (1982) · Zbl 0511.76031
[2] Cruchaga, Marcela A.; Oñate, Eugenio, A finite element formulation for incompressible flow problems using a generalized streamline operator, Comput. Methods Appl. Mech. Eng., 143, 1-2, 49-67 (1997) · Zbl 0898.76055
[3] Erturk, Ercan, Discussions on driven cavity flow, Int. J. Numer. Methods Fluids, 60, 3, 275-294 (2009) · Zbl 1162.76047
[4] Wahba, E. M., Steady flow simulations inside a driven cavity up to Reynolds number 35,000, Comput. Fluids, 66, 85-97 (2012) · Zbl 1365.76203
[5] Wang, Da-Guo; Shui, Qing-Xiang, SUPG finite element method based on penalty function for lid-driven cavity flow up to Re=27500, Acta Mech. Sin., 32, 1, 54-63 (2015) · Zbl 1342.76080
[6] Ding, Peng, Solution of lid-driven cavity problems with an improved SIMPLE algorithm at high Reynolds numbers, Int. J. Heat Mass Transf., 115, 942-954 (dec 2017)
[7] Sedaghatjoo, Zeynab; Dehghan, Mehdi; Hosseinzadeh, Hossein, Numerical solution of 2D Navier-Stokes equation discretized via boundary elements method and finite difference approximation, Eng. Anal. Bound. Elem., 96, 64-77 (2018) · Zbl 1403.76102
[8] Yu, P. X.; Tian, Zhen F., An upwind compact difference scheme for solving the streamfunction-velocity formulation of the unsteady incompressible Navier-Stokes equation, Comput. Math. Appl., 75, 9, 3224-3243 (2018) · Zbl 1409.76093
[9] Fraga Filho, C. A.D.; Chacaltana, J. T.A.; Pinto, W. J.N., Meshless Lagrangian SPH method applied to isothermal lid-driven cavity flow at low-Re numbers, Comput. Part. Mech., 5, 4, 467-475 (2018)
[10] Álvarez-Hostos, Juan C.; Fachinotti, Victor D.; Sarache Piña, Alirio J.; Bencomo, Alfonso D.; Puchi-Cabrera, Eli S., Implementation of standard penalty procedures for the solution of incompressible Navier-Stokes equations, employing the element-free Galerkin method, Eng. Anal. Bound. Elem., 96, 36-54 (2018) · Zbl 1403.76037
[11] Yang, Jie; Potier-Ferry, Michel; Hu, Heng, Solving the stationary Navier-Stokes equations by using Taylor meshless method, Eng. Anal. Bound. Elem., 98, 8-16 (2019) · Zbl 1404.76197
[12] Bourantas, George C.; Zwick, Benjamin F.; Joldes, Grand R.; Loukopoulos, Vassilios C.; Tavner, Angus C. R.; Wittek, Adam; Miller, Karol, An explicit meshless point collocation solver for incompressible Navier-Stokes equations, Fluids, 4, 3, 164 (2019)
[13] Rammane, Mohammed; Mesmoudi, Said; Tri, Abdeljalil; Braikat, Bouazza; Damil, Noureddine, Solving the incompressible fluid flows by a high-order mesh-free approach, Int. J. Numer. Methods Fluids, 92, 5, 422-435 (2020)
[14] Álvarez Hostos, Juan C.; Cruchaga, Marcela A.; Fachinotti, Víctor D.; Zambrano Carrillo, Javier A.; Zamora, Esteban, A plausible extension of standard penalty, streamline upwind and immersed boundary techniques to the improved element-free Galerkin-based solution of incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 372, Article 113380 pp. (2020) · Zbl 1506.76020
[15] Halassi Bacar, Abdoul-hafar; Ouazar, Driss; Taik, Ahmed, A predictor-corrector meshless based scheme for incompressible Navier-Stokes flows, Int. J. Appl. Comput. Math., 6, 1 (2020) · Zbl 1465.76077
[16] Vasyliv, Yaroslav; Alexeev, Alexander, Simulating incompressible flow on moving meshfree grids, Comput. Fluids, 200, Article 104464 pp. (2020) · Zbl 1519.76221
[17] Chen, Zheng-Ji; Li, Zeng-Yao; Tao, Wen-Quan, A two-level variational multiscale meshless local Petrov-Galerkin (VMS-MLPG) method for incompressible Navier-Stokes equations, Numer. Heat Transf., Part B, Fundam., 1-15 (2020)
[18] Wang, Lihua; Qian, Zhihao; Zhou, Yueting; Peng, Yongbo, A weighted meshfree collocation method for incompressible flows using radial basis functions, J. Comput. Phys., 401, Article 108964 pp. (2020) · Zbl 1453.65364
[19] Nuriev, A. N.; Egorov, A. G.; Zaitseva, O. N., Bifurcation analysis of steady-state flows in the lid-driven cavity, Fluid Dyn. Res., 48, 6, Article 061405 pp. (2016)
[20] Lestandi, Lucas; Bhaumik, Swagata; Avatar, G. R.K. C.; Azaiez, Mejdi; Sengupta, Tapan K., Multiple Hopf bifurcations and flow dynamics inside a 2D singular lid driven cavity, Comput. Fluids, 166, 86-103 (2018) · Zbl 1390.76470
[21] Suman, V. K.; Siva Viknesh, S.; Tekriwal, Mohit K.; Bhaumik, Swagata; Sengupta, Tapan K., Grid sensitivity and role of error in computing a lid-driven cavity problem, Phys. Rev. E, 99, 1 (2019)
[22] Kuhlmann, Hendrik C.; Romanò, Francesco, Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics (2019), Springer International Publishing · Zbl 1398.76005
[23] Wang, Tao; Liu, Tiegang; Wang, Zheng, The second Hopf bifurcation in lid-driven square cavity, Chin. Phys. B, 29, 3, Article 030503 pp. (2020)
[24] Wang, Xiaodong; Ouyang, Jie, Time-related element-free Taylor-Galerkin method with non-splitting decoupling process for incompressible steady flow, Int. J. Numer. Methods Fluids, 68, 7, 839-855 (2011) · Zbl 1237.76077
[25] Wang, Xiaodong; Ouyang, Jie; Su, Jin; Yang, Binxin, On the superiority of the mixed element free Galerkin method for solving the steady incompressible flow problems, Eng. Anal. Bound. Elem., 36, 11, 1618-1630 (2012) · Zbl 1351.76084
[26] Liu, G. R., Mesh Free Methods (2009), CRC Press
[27] Zienkiewicz, Olek C.; Taylor, Robert L.; Zhu, J. Z., The Finite Element Method: Its Basis and Fundamentals (2013), Elsevier LTD: Elsevier LTD Oxford · Zbl 1307.74005
[28] Reséndiz-Flores, Edgar O.; Saucedo-Zendejo, Félix R., Numerical simulation of coupled fluid flow and heat transfer with phase change using the Finite Pointset Method, Int. J. Therm. Sci., 133, 13-21 (2018)
[29] Reséndiz-Flores, Edgar O.; Saucedo-Zendejo, Félix R., Meshfree numerical simulation of free surface thermal flows in mould filling processes using the Finite Pointset Method, Int. J. Therm. Sci., 127, 29-40 (may 2018)
[30] Álvarez Hostos, J. C.; Bencomo, A. D.; Puchi Cabrera, E. S., Element-free Galerkin formulation for solving transient heat transfer problems of direct chill casting processes, Can. Metall. Q., 56, 2, 156-167 (2017)
[31] Álvarez Hostos, J. C.; Bencomo, A. D.; Puchi Cabrera, E. S.; Figueroa Poleo, I. M., A pseudo-transient heat transfer simulation of a continuous casting process, employing the element-free Galerkin method, Int. J. Cast Met. Res., 31, 1, 47-55 (2017)
[32] Álvarez-Hostos, J. C.; Bencomo, A. D.; Puchi Cabrera, E. S.; Guérin, J.-D.; Dubar, L., Modeling the viscoplastic flow behavior of a 20MnCr5 steel grade deformed under hot-working conditions, employing a meshless technique, Int. J. Plast., 103, 119-142 (2018)
[33] Álvarez-Hostos, Juan C.; Bencomo, Alfonso D.; Puchi-Cabrera, Eli S.; Fachinotti, Víctor D.; Tourn, Benjamín; Salazar-Bove, Joselynne C., Implementation of a standard stream-upwind stabilization scheme in the element-free Galerkin based solution of advection-dominated heat transfer problems during solidification in direct chill casting processes, Eng. Anal. Bound. Elem., 106, 170-181 (sep 2019) · Zbl 1464.80017
[34] Álvarez-Hostos, Juan C.; Gutierrez-Zambrano, Erick A.; Salazar Bove, Joselynne C.; Puchi-Cabrera, Eli S.; Bencomo, Alfonso D., Solving heat conduction problems with phase-change under the heat source term approach and the element-free Galerkin formulation, Int. Commun. Heat Mass Transf., 108, Article 104321 pp. (2019)
[35] Zhang, Jian-Ping; Wang, Shu-Sen; Gong, Shu-Guang; Zuo, Qing-Song; Hu, Hui-Yao, Thermo-mechanical coupling analysis of the orthotropic structures by using element-free Galerkin method, Eng. Anal. Bound. Elem., 101, 198-213 (2019) · Zbl 1464.74228
[36] Abbaszadeh, Mostafa; Dehghan, Mehdi; Khodadadian, Amirreza; Heitzinger, Clemens, Error analysis of interpolating element free Galerkin method to solve non-linear extended Fisher-Kolmogorov equation, Comput. Math. Appl., 80, 1, 247-262 (2020) · Zbl 1446.65103
[37] Abbaszadeh, Mostafa; Dehghan, Mehdi, A meshless numerical procedure for solving fractional reaction subdiffusion model via a new combination of alternating direction implicit (ADI) approach and interpolating element free Galerkin (EFG) method, Comput. Math. Appl., 70, 10, 2493-2512 (2015) · Zbl 1443.65189
[38] Battaglia, L.; Cruchaga, M.; Storti, M.; D’Elía, J.; Aedo, J. Núñez; Reinoso, R., Numerical modelling of 3D sloshing experiments in rectangular tanks, Appl. Math. Model., 59, 357-378 (2018) · Zbl 1480.76131
[39] Caron, P. A.; Cruchaga, M. A.; Larreteguy, A. E., Study of 3D sloshing in a vertical cylindrical tank, Phys. Fluids, 30, 8, Article 082112 pp. (2018)
[40] Castillo, Ernesto; Cruchaga, Marcela A.; Baiges, Joan; Flores, José, An oil sloshing study: adaptive fixed-mesh ALE analysis and comparison with experiments, Comput. Mech., 63, 5, 985-998 (2018) · Zbl 1466.76004
[41] Costarelli, Santiago D.; Garelli, Luciano; Cruchaga, Marcela A.; Storti, Mario A.; Ausensi, Ronald; Idelsohn, Sergio R., An embedded strategy for the analysis of fluid structure interaction problems, Comput. Methods Appl. Mech. Eng., 300, 106-128 (2016) · Zbl 1425.74152
[42] González, Felipe A.; Cruchaga, Marcela A.; Celentano, Diego J., Analysis of flow past oscillatory cylinders using a finite element fixed mesh formulation, J. Fluids Eng., 139, 8 (2017)
[43] Cornejo González, Felipe A.; Cruchaga, Marcela A.; Celentano, Diego J., Modelling low Reynolds number vortex-induced vibration problems with a fixed mesh fluid-solid interaction formulation, Phys. Fluids, 29, 11, Article 113601 pp. (2017)
[44] González, Felipe A.; Bustamante, Jorge A.; Cruchaga, Marcela A.; Celentano, Diego J., Numerical study of flow past oscillatory square cylinders at low Reynolds number, Eur. J. Mech. B, Fluids, 75, 286-299 (may 2019) · Zbl 1408.76366
[45] Dehghan, Mehdi; Abbaszadeh, Mostafa, Proper orthogonal decomposition variational multiscale element free Galerkin (POD-VMEFG) meshless method for solving incompressible Navier-Stokes equation, Comput. Methods Appl. Mech. Eng., 311, 856-888 (2016) · Zbl 1439.76060
[46] Lin, Xingjian; Wu, Jie; Zhang, Tongwei, A mesh-free radial basis function-based semi-Lagrangian lattice Boltzmann method for incompressible flows, Int. J. Numer. Methods Fluids, 91, 4, 198-211 (2019)
[47] Álvarez-Hostos, Juan C.; Puchi-Cabrera, Eli S.; Bencomo, Alfonso D., Stress analysis of a continuous casting process, on the basis of the element-free Galerkin formulation, Steel Res. Int., 88, 2, Article 1600019 pp. (2016)
[48] Álvarez-Hostos, Juan Carlos; Bencomo, A. D.; Puchi Cabrera, E. S., Simple iterative procedure for the thermal-mechanical analysis of continuous casting processes, using the element-free Galerkin method, J. Therm. Stresses, 41, 2, 160-181 (2018)
[49] Zhang, Lin; Ouyang, Jie; Zhang, Xiaohua; Zhang, Wenbin, On a multi-scale element-free Galerkin method for the Stokes problem, Appl. Math. Comput., 203, 2, 745-753 (2008) · Zbl 1262.76026
[50] Zhang, Tao; Li, Xiaolin, A generalized element-free Galerkin method for Stokes problem, Comput. Math. Appl., 75, 9, 3127-3138 (2018) · Zbl 1409.76069
[51] Wang, Jufeng; Sun, Fengxin, A hybrid generalized interpolated element-free Galerkin method for Stokes problems, Eng. Anal. Bound. Elem., 111, 88-100 (2020) · Zbl 1464.65187
[52] Zhang, Xiaohua; Zhang, Ping, Meshless modeling of natural convection problems in non-rectangular cavity using the variational multiscale element free Galerkin method, Eng. Anal. Bound. Elem., 61, 287-300 (2015) · Zbl 1403.76054
[53] Zhang, Ping; Zhang, Xiaohua; Deng, Jiheng; Song, Laizhong, A numerical study of natural convection in an inclined square enclosure with an elliptic cylinder using variational multiscale element free Galerkin method, Int. J. Heat Mass Transf., 99, 721-737 (aug 2016)
[54] Li, Xiaolin; Zhang, Shougui; Wang, Yan; Chen, Hao, Analysis and application of the element-free Galerkin method for nonlinear sine-Gordon and generalized sinh-Gordon equations, Comput. Math. Appl., 71, 8, 1655-1678 (2016) · Zbl 1443.65211
[55] Li, Xiaolin; Dong, Haiyun, The element-free Galerkin method for the nonlinear p-Laplacian equation, Comput. Math. Appl., 75, 7, 2549-2560 (2018) · Zbl 1409.65096
[56] Dehghan, Mehdi; Narimani, Niusha, The element-free Galerkin method based on moving least squares and moving Kriging approximations for solving two-dimensional tumor-induced angiogenesis model, (Engineering with Computers (2019)) · Zbl 1413.65381
[57] Ding, Rui; Wang, Yu; Shen, Quan, Convergence analysis and error estimates of the element-free Galerkin method for the second kind of elliptic variational inequalities, Comput. Math. Appl., 78, 8, 2584-2592 (2019) · Zbl 1443.65324
[58] Li, Xiaolin; Li, Shuling, A linearized element-free Galerkin method for the complex Ginzburg-Landau equation, Comput. Math. Appl., 90, 135-147 (2021) · Zbl 1524.65572
[59] Li, Xiaolin; Dong, Haiyun, An element-free Galerkin method for the obstacle problem, Appl. Math. Lett., 112, Article 106724 pp. (2021) · Zbl 1454.65171
[60] Cheng, H.; Peng, M. J.; Cheng, Y. M., A hybrid improved complex variable element-free Galerkin method for three-dimensional advection-diffusion problems, Eng. Anal. Bound. Elem., 97, 39-54 (2018)
[61] Meng, Z. J.; Cheng, H.; Ma, L. D.; Cheng, Y. M., The hybrid element-free Galerkin method for three-dimensional wave propagation problems, Int. J. Numer. Methods Eng., 117, 1, 15-37 (2018) · Zbl 07865092
[62] Li, Xiaolin; Wang, Qingqing, Analysis of the inherent instability of the interpolating moving least squares method when using improper polynomial bases, Eng. Anal. Bound. Elem., 73, 21-34 (2016) · Zbl 1403.65206
[63] Paniconi, Claudio; Putti, Mario, A comparison of Picard and Newton iteration in the numerical solution of multidimensional variably saturated flow problems, Water Resour. Res., 30, 12, 3357-3374 (1994)
[64] Mehl, Steffen, Use of Picard and Newton iteration for solving nonlinear ground water flow equations, Ground Water, 44, 4, 583-594 (2006)
[65] Reddy, J. N.; Gartling, D. K., The Finite Element Method in Heat Transfer and Fluid Dynamics (2010), CRC Press · Zbl 1257.80001
[66] Zhang, Tao; Li, Xiaolin, Meshless analysis of Darcy flow with a variational multiscale interpolating element-free Galerkin method, Eng. Anal. Bound. Elem., 100, 237-245 (2019) · Zbl 1464.76067
[67] Zhang, Tao; Li, Xiaolin, Variational multiscale interpolating element-free Galerkin method for the nonlinear Darcy-Forchheimer model, Comput. Math. Appl. (2019) · Zbl 1443.65382
[68] Kalita, Jiten C.; Gupta, Murli M., A streamfunction-velocity approach for 2D transient incompressible viscous flows, Int. J. Numer. Methods Fluids, 1-30 (2009) · Zbl 1377.76007
[69] Burggraf, Odus R., Analytical and numerical studies of the structure of steady separated flows, J. Fluid Mech., 24, 1, 113-151 (1966)
[70] González, A.; Castillo, E.; Cruchaga, M. A., Numerical verification of a non-residual orthogonal term-by-term stabilized finite element formulation for incompressible convective flow problems, Comput. Math. Appl., 80, 5, 1009-1028 (2020) · Zbl 1447.65073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.