×

SUPG finite element method based on penalty function for lid-driven cavity flow up to \(Re = 27500\). (English) Zbl 1342.76080

Summary: A streamline upwind/Petrov-Galerkin (SUPG) finite element method based on a penalty function is proposed for steady incompressible Navier-Stokes equations. The SUPG stabilization technique is employed for the formulation of momentum equations. Using the penalty function method, the continuity equation is simplified and the pressure of the momentum equations is eliminated. The lid-driven cavity flow problem is solved using the present model. It is shown that steady flow simulations are computable up to \(Re = 27500\), and the present results agree well with previous solutions. Tabulated results for the properties of the primary vortex are also provided for benchmarking purposes.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI

References:

[1] Bruneau, C.H., Saad, M.: The 2D lid-driven cavity problem revisited. Comput. Fluids 35, 326-348 (2006) · Zbl 1099.76043 · doi:10.1016/j.compfluid.2004.12.004
[2] Poliashenko, M., Aidun, C.K.: A direct method for computation of simple bifurcations. J. Comput. Phys. 121, 246-260 (1995) · Zbl 0840.76076 · doi:10.1016/S0021-9991(95)90068-3
[3] Peng, Y.F., Shiau, Y.H., Hwang, R.R.: Transition in a 2-D lid-driven cavity flow. Comput. Fluids 32, 337-352 (2003) · Zbl 1009.76513 · doi:10.1016/S0045-7930(01)00053-6
[4] Shui, Q.X., Wang, D.G.: Numerical simulation for Navier-Stokes equations by projection/characreistic-based operator-splitting finite element method. Chin. J. Theor. Appl. Mech. 46, 369-381 (2014)
[5] Barragy, E., Carey, G.F.: Stream function-vorticity driven cavity solutions using p finite elements. Comput. Fluids 26, 453-468 (1997) · Zbl 0898.76053 · doi:10.1016/S0045-7930(97)00004-2
[6] Hachem, E., Rivaux, B., Kloczko, T., et al.: Stabilized finite element method for incompressible flows with high Reynolds number. J. Comput. Phys. 229, 8643-8665 (2010) · Zbl 1282.76120 · doi:10.1016/j.jcp.2010.07.030
[7] Bassi, F., Crivellini, A., Di Pietro, D.A., et al.: An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations. J. Comput. Phys 218, 794-815 (2006) · Zbl 1158.76313 · doi:10.1016/j.jcp.2006.03.006
[8] Botti, L., Di Pietro, D.A.: A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure. J. Comput. Phys. 230, 572-585 (2011) · Zbl 1283.76030 · doi:10.1016/j.jcp.2010.10.004
[9] Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199-259 (1982) · Zbl 0497.76041 · doi:10.1016/0045-7825(82)90071-8
[10] Babuška, I.: The finite element method with penalty. Math. Comput. 27, 221-228 (1973) · Zbl 0299.65057 · doi:10.1090/S0025-5718-1973-0351118-5
[11] Tezduyar, T.E., Liou, J., Ganjoo, D.K.: Petrov-Galerkin methods on multiply-connected domains for the vorticity-stream function formulation of the incompressible Navier-Stokes equations. J. Numer. Methods Fluids 8, 1269-1290 (1988) · Zbl 0667.76046
[12] Huang, C., Zhou, D., Bao, Y.: A semi-implicit three-step method based on SUPG finite element formulation for flow in lid driven cavities with different geometries. J. Zhejiang Univ. Sci. A 12, 33-45 (2011) · Zbl 1400.76040 · doi:10.1631/jzus.A1000098
[13] Belytschko, T., Liu, W.K., Moran, B., et al.: Nonlinear Finite Elements for Continua and Structures. John Wiley & Sons, Chichester (2013) · Zbl 1279.74002
[14] Gunzburger, M.D.: Finite Element Methods for Viscous Incompressible Flows. Academic Press, San Diego (1989) · Zbl 0697.76031
[15] Singh, A., Singh, I.V., Prakash, R.: Numerical analysis of fluid squeezed between two parallel plates by meshless method. Comput. Fluids 36, 1460-1480 (2007) · Zbl 1194.76217 · doi:10.1016/j.compfluid.2006.12.005
[16] Nithiarasu, P.: An efficient artificial compressibility (AC) scheme based on the characteristic based split (CBS) method for incompressible flows. Int. J. Numer. Methods Eng. 56, 1815-1845 (2003) · Zbl 1072.76040 · doi:10.1002/nme.712
[17] Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J.Comput. Phys. 48, 387-411 (1982) · Zbl 0511.76031 · doi:10.1016/0021-9991(82)90058-4
[18] Wahba, E.M.: Steady flow simulations inside a driven cavity up to Reynolds number 35,000. Comput. Fluids 66, 85-97 (2012) · Zbl 1365.76203 · doi:10.1016/j.compfluid.2012.06.012
[19] Erturk, E., Corke, T.C., Gökçöl, C.: Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods Fluids 48, 747-774 (2005) · Zbl 1071.76038 · doi:10.1002/fld.953
[20] Erturk, E.: Discussions on driven cavity flow. Int. J. Numer. Methods Fluids 60, 275-294 (2009) · Zbl 1162.76047 · doi:10.1002/fld.1887
[21] Gravemeier, V., Wall, W.A., Ramm, E.: A three-level finite element method for the instationary incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 193, 1323-1366 (2004) · Zbl 1085.76038 · doi:10.1016/j.cma.2003.12.027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.