×

The effect of time delay in a two-patch model with random dispersal. (English) Zbl 1345.92121

In this paper, the authors consider the following problem for a single population with a total of \( n\geq 2 \) patches: \[ \frac{du_i(t)}{dt}=\sum\limits_{j=1}^n[d_{ij}u_j(t)-d_{ji}u_i(t)]+\mu u_i(t)[r_i-u_i(t-\tau)],\quad t>0,\tag{1} \] where \(u_i\) denotes the population density in a patch \(i\), \(1\leq i\leq n\); \(r_i\geq 0\) is a constant, and at least one \(r_j>0\), \(1\leq j\leq n\); \(d_{ij}\geq 0\) denotes the constant dispersal rate of individuals of patch \(j\) to patch \(i\) and \(d_{ii}=0;\) \(\tau\geq 0\) is the time delay and is assumed to be constant, and \(\mu\) is a constant.
The authors study special cases of system (1) when \(n=2\), and for each case determine the existence of a positive equilibrium. They also use the Hopf bifurcation theorem to obtain the existence of periodic orbits. Furthermore, they use the center manifold theorem and the normal form method to obtain results about the stability and bifurcation direction of periodic orbits. In addition, they illustrate their results with numerical examples.

MSC:

92D25 Population dynamics (general)
34K60 Qualitative investigation and simulation of models involving functional-differential equations
34K10 Boundary value problems for functional-differential equations
34K13 Periodic solutions to functional-differential equations
34K17 Transformation and reduction of functional-differential equations and systems, normal forms
34K18 Bifurcation theory of functional-differential equations
34K20 Stability theory of functional-differential equations
Full Text: DOI

References:

[1] Busenberg, S., & Huang, W. (1996). Stability and Hopf bifurcation for a population delay model with diffusion effects. J. Differ. Equ., 124, 80-107. · Zbl 0854.35120 · doi:10.1006/jdeq.1996.0003
[2] Cantrell, R. S., & Cosner, C. (2003). Spatial ecology via reaction-diffusion equations. Series in mathematical and computational biology. Chichester: Wiley. · Zbl 1059.92051
[3] Chen, S., & Shi, J. (2012). Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect. J. Differ. Equ., 253, 3440-3470. · Zbl 1256.35177 · doi:10.1016/j.jde.2012.08.031
[4] Chen, S., Shi, J., & Wei, J. (2013). Time delay-induced instabilities and Hopf bifurcations in general reaction-diffusion systems. J. Nonlinear Sci., 23, 1-38. · Zbl 1271.34071 · doi:10.1007/s00332-012-9138-1
[5] Cooke, K., van den Driessche, P., & Zou, X. (1999). Interaction of maturation delay and nonlinear birth in population and epidemic models. J. Math. Biol., 39, 332-352. · Zbl 0945.92016 · doi:10.1007/s002850050194
[6] Davidson, F. S., & Gourley, S. A. (2001). The effects of temporal delays in a model for a food-limited, diffusing population. J. Math. Anal. Appl., 261, 633-648. · Zbl 0992.35047 · doi:10.1006/jmaa.2001.7563
[7] Feng, W., & Lu, X. (1999). On diffusive population models with toxicants and time delays. J. Math. Anal. Appl., 233, 373-386. · Zbl 0927.35049 · doi:10.1006/jmaa.1999.6332
[8] Gourley, S. A., & Ruan, S. (2000). Dynamics of the diffusive Nicholson’s blowflies equation with distributed delay. Proc. R. Soc. Edinb., Sect. A, 130, 1275-1291. · Zbl 0973.34064 · doi:10.1017/S0308210500000688
[9] Gourley, S. A., & So, J. W.-H. (2002). Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain. J. Math. Biol., 44, 49-78. · Zbl 0993.92027 · doi:10.1007/s002850100109
[10] Hassard, B. D., Kazarinoff, N. D., & Wan, Y. H. (1981). Theory and applications of Hopf bifurcation. Cambridge: Cambridge University Press. · Zbl 0474.34002
[11] He, X.; Wu, J.; Zou, X.; Chen, L. (ed.); etal., Dynamics of single species populations over a patchy environment (1998), Singapore
[12] Kuang, Y. (1993). Delay differential equations with applications in population dynamics. San Diego: Academic Press · Zbl 0777.34002
[13] Liao, K.-L., Shih, C.-W., & Tseng, J.-P. (2012). Synchronized oscillations in mathematical model of segmentation in zebrafish. Nonlinearity, 25, 869-904. · Zbl 1237.37065 · doi:10.1088/0951-7715/25/4/869
[14] Madras, N., Wu, J., & Zou, X. (1996). Local-nonlocal interaction and spatio-temporal patterns in single-species population over a patch environment. Can. Appl. Math. Q., 4, 109-134. · Zbl 0859.34056
[15] Memory, M. C. (1989). Bifurcation and asymptotic behaviour of solutions of a delay-differential equation with diffusion. SIAM J. Math. Anal., 20, 533-546. · Zbl 0685.34070 · doi:10.1137/0520037
[16] Morita, Y. (1984). Destabilization of periodic solutions arising in delay-diffusion systems in several space dimensions. Jpn. J. Appl. Math., 1, 39-65. · Zbl 0576.35008 · doi:10.1007/BF03167861
[17] Shi, X., Cui, J., & Zhou, X. (2011). Stability and Hopf bifurcation analysis on an eco-epidemic model with a stage structure. Nonlinear Anal., 74, 1088-1106. · Zbl 1215.34102 · doi:10.1016/j.na.2010.09.038
[18] Smith, H. L. (1996). Monotone dynamical system: an introduction to the theory of competitive and cooperative systems. Rhode Island: Am. Math. Soc.
[19] So, J. W.-H., Wu, J., & Yang, Y. (2000). Numerical steady state and Hopf bifurcation analysis on the diffusive Nicholson’s blowflies equation. Appl. Math. Comput., 111, 33-51. · Zbl 1023.65108 · doi:10.1016/S0096-3003(99)00047-8
[20] So, J. W.-H., & Yang, Y. (1998). Dirichlet problem for the diffusive Nicholson’s blowflies equation. J. Differ. Equ., 150, 317-348. · Zbl 0923.35195 · doi:10.1006/jdeq.1998.3489
[21] Song, Y., Zhang, T., & Tadé, M. O. (2009). Stability switches, Hopf bifurcations, and spatio-temporal patterns in a delayed neural model with bidirectional coupling. J. Nonlinear Sci., 19, 597-632. · Zbl 1186.34120 · doi:10.1007/s00332-009-9046-1
[22] Su, Y., Wei, J., & Shi, J. (2009). Hopf bifurcations in a reaction-diffusion population model with delay effect. J. Differ. Equ., 247, 1156-1184. · Zbl 1203.35029 · doi:10.1016/j.jde.2009.04.017
[23] Su, Y., Wei, J., & Shi, J. (2010). Bifurcation analysis in a delayed diffusive Nicholson’s blowflies equation. Nonlinear Anal., Real World Appl., 11, 1692-1703. · Zbl 1191.35046 · doi:10.1016/j.nonrwa.2009.03.024
[24] Sun, C., Lin, Y., & Han, M. (2006). Stability and Hopf bifurcation for an epidemic disease model with delay. Chaos Solitons Fractals, 30, 204-216. · Zbl 1165.34048 · doi:10.1016/j.chaos.2005.08.167
[25] Wan, A., & Zou, X. (2009). Hopf bifurcation analysis for a model of genetic regulatory system with delay. J. Math. Anal. Appl., 356, 464-476. · Zbl 1178.34104 · doi:10.1016/j.jmaa.2009.03.037
[26] Wang, L., & Zou, X. (2004). Hopf bifurcation in bidirectional associative memory neural networks with delays: analysis and computation. J. Comput. Appl. Math., 167, 73-90. · Zbl 1054.65076 · doi:10.1016/j.cam.2003.09.047
[27] Wang, L., & Zou, X. (2005). Stability and bifurcation of bidirectional associative memory neural networks with delayed self-feedback. Int. J. Bifurc. Chaos, 15, 2145-2159. · Zbl 1092.34567 · doi:10.1142/S0218127405013265
[28] Wei, J., & Zou, X. (2006). Bifurcation analysis of a population model and the resulting SIS epidemic model with delay. J. Comput. Appl. Math., 197, 169-187. · Zbl 1098.92055 · doi:10.1016/j.cam.2005.10.037
[29] Xu, C., & Li, P. (2012). Dynamical analysis in a delayed predator-prey model with two delays. Discrete Dyn. Nat. Soc.. doi:10.1155/2012/652947. · Zbl 1250.34068 · doi:10.1155/2012/652947
[30] Xu, C., Tang, X., & Liao, M. (2010). Stability and bifurcation analysis of a delayed predator-prey model of prey dispersal in two-patch environments. Appl. Math. Comput., 216, 2920-2936. · Zbl 1191.92077 · doi:10.1016/j.amc.2010.04.004
[31] Xu, X., & Wu, Y. (2012). The effect of time delay on dynamical behavior in an ecoepidemiological model. J. Appl. Math. doi:10.1155/2012/286961. · Zbl 1263.92055 · doi:10.1155/2012/286961
[32] Yi, T., & Zou, X. (2010). Map dynamics versus dynamics of associated delay reaction-diffusion equations with a Neumann condition. Proc. R. Soc. A, 466, 2955-2973. · Zbl 1211.35150 · doi:10.1098/rspa.2009.0650
[33] Yoshida, K. (1982). The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology. Hiroshima Math. J., 12, 321-348. · Zbl 0522.35011
[34] Yu, W., & Cao, J. (2006). Stability and Hopf bifurcation analysis on a four-neuron BAM neural network with time delays. Phys. Lett. A, 351, 64-78. · Zbl 1234.34047 · doi:10.1016/j.physleta.2005.10.056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.