×

Lattice equable quadrilaterals. III: Tangential and extangential cases. (English) Zbl 07856171

Summary: A lattice equable quadrilateral is a quadrilateral in the plane whose vertices lie on the integer lattice and which is equable in the sense that its area equals its perimeter. This paper treats the tangential and extangential cases. We show that up to Euclidean motions, there are only 6 convex tangential lattice equable quadrilaterals, while the concave ones are arranged in 7 infinite families, each being given by a well known Diophantine equation of order 2 in 3 variables. On the other hand, apart from the kites, up to Euclidean motions there is only one concave extangential lattice equable quadrilateral, while there are infinitely many convex ones.

MSC:

11D25 Cubic and quartic Diophantine equations
51M04 Elementary problems in Euclidean geometries
52B20 Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry)

Software:

OEIS; QUAD

References:

[1] C. Aebi and G. Cairns, A vector identity for quadrilaterals, College Math. J. 53 (2022), no. 5, 392-393. · Zbl 1521.97005
[2] C. Aebi and G. Cairns, A simple sum for simplices, Math. Intelligencer 45 (2023), no. 2, 165-167. · Zbl 1518.51016
[3] C. Aebi and G. Cairns, Lattice equable quadrilaterals I: parallelograms, L’Enseign. Math. 67 (2021), no. 3-4, 369-401. · Zbl 1486.51020
[4] C. Aebi and G. Cairns, Lattice equable quadrilaterals II: kites, trapezoids and cyclic quadri-laterals, Int. J. Geom. 11 (2022), no. 2, 5-27. · Zbl 1513.51065
[5] D. Alpern, Integer factorization calculator, https://www.alpertron.com.ar/ECM.HTM, ac-cessed 2 October 2021.
[6] D. Alpern, Generic two integer variable equation solver, https://www.alpertron.com.ar/ QUAD.HTM, accessed 2 October 2021.
[7] A. Al-Sharif, M. Hajja and P. T. Krasopoulos, Coincidences of centers of plane quadrilaterals, Results Math. 55 (2009), no. 3-4, 231-247. · Zbl 1191.51004
[8] C. Alsina and R. B. Nelsen, Charming Proofs, a Journey into Elegant Mathematics, Mathe-matical Association of America, Washington, DC, 2010. · Zbl 1200.00021
[9] C. Alsina and R. B. Nelsen, A Cornucopia of Quadrilaterals, Mathematical Association of America, Dolciani Mathematical Expositions, 2020. · Zbl 1443.51001
[10] T. Andreescu and B. Enescu, Mathematical Olympiad Treasures, 2nd ed., Birkhäuser/Springer, New York, 2011. · Zbl 1225.00008
[11] T. C. Brown and P. J-S. Shiue, Squares of second-order linear recurrence sequences, Fibonacci Quart. 33 (1995), no. 4, 352-356. · Zbl 0831.11018
[12] R. D. Carmichael, Diophantine Analysis, 1st ed., Wiley, New York, 1915. · JFM 45.0283.11
[13] N. Dergiades and D. M. Christodoulou, The two incenters of an arbitrary convex quadrilateral, Forum Geom. 17 (2017), 245-254. · Zbl 1371.52005
[14] L. E. Dickson, Some relations between the theory of numbers and other branches of math-ematics, Comptes rendus du congrés international des mathématiciens, 1920, pp. 41-56, H. Villat (Ed.), Toulouse, 1921. Available at https://www.mathunion.org/fileadmin/ICM/ Proceedings/ICM1920/ICM1920.ocr.pdf. · JFM 48.1151.01
[15] F. J. Duarte, Sur les équations diophantiennes x 2 + y 2 + z 2 = t 2 , x 3 + y 3 + z 3 = t 3 , L’Enseign. Math. 33 (1934) 78-87. · Zbl 0010.15102
[16] F. A. Foraker, Determinants in elementary analytic geometry, Amer. Math. Monthly 27 (1920), no. 2, 57-61.
[17] M. Hajja, A very short and simple proof of “the most elementary theorem” of Euclidean geometry, Forum Geom. 6 (2006), 167-169. · Zbl 1123.51017
[18] M. Josefsson, More characterizations of tangential quadrilaterals, Forum Geom. 11 (2011), 65-82. · Zbl 1222.51011
[19] M. Josefsson, When is a tangential quadrilateral a kite?, Forum Geom. 11 (2011), 165-174. · Zbl 1285.51014
[20] M. Josefsson, The area of a bicentric quadrilateral, Forum Geom. 11 (2011), 155-164. · Zbl 1283.51017
[21] M. Josefsson, Similar metric characterizations of tangential and extangential quadrilaterals, Forum Geom. 12 (2012), 63-77. · Zbl 1247.51011
[22] M. Josefsson, More characterizations of extangential quadrilaterals, Int. J. Geom. 5 (2016), 62-76. · Zbl 1380.51013
[23] M. Josefsson, Further charaterisations of tangential quadrilaterals, Math. Gaz. 101 (2017), 401-411. · Zbl 1504.51012
[24] M. Josefsson, Metric relations in extangential quadrilaterals, Int. J. Geom. 6 (2017), 9-23. · Zbl 1404.51012
[25] M. Josefsson, On Pitot’s theorem, Math. Gaz. 103 (2019), 333-337.
[26] M. Josefsson and M. Dalcín, New characterizations of tangential quadrilaterals, Int. J. Geom. 9 (2020), 52-68. · Zbl 1513.52002
[27] F. Lemmermeyer, Reciprocity Laws. From Euler to Eisenstein, Springer Monographs in Math-ematics. Springer-Verlag, Berlin, 2000. · Zbl 0949.11002
[28] D. A. Lind, The quadratic field Q( √ 5) and a certain Diophantine equation, Fibonacci Quart.
[29] N. Minculete, Characterizations of a tangential quadrilateral, Forum Geom. 9 (2009), 113-118. · Zbl 1168.51004
[30] R. A. Mollin, A continued fraction approach to the Diophantine equation ax 2 -by 2 = ±1, JP J. Algebra Number Theory Appl. 4 (2004), no. 1, 159-207. · Zbl 1056.11017
[31] L. J. Mordell, Diophantine Equations, Academic Press, London-New York, 1969. · Zbl 0188.34503
[32] I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers, Fifth edition, John Wiley & Sons, New York, 1991 · Zbl 0742.11001
[33] A. Ostermann and G. Wanner, Geometry by its History, Springer, Heidelberg, 2012. · Zbl 1288.51001
[34] D. Pedoe, The most “elementary” theorem of Euclidean geometry, Math. Mag. 49 (1976), no. 1, 40-42. · Zbl 0317.50011
[35] J. Rushall, M. Guttierez and V. McCarty, On the complete tree of primitive Pythagorean quadruples, Integers 20 (2020), Paper No. A73, 23 pp. · Zbl 1461.11050
[36] L. Sauvé, On circumscribable quadrilaterals, Crux Math. 2 (1976) 63-67.
[37] The On-line Encyclopedia of Integer Sequences, https://oeis.org. · Zbl 1274.11001
[38] R. Spira, The Diophantine equation x 2 + y 2 + z 2 = m 2 , Amer. Math. Monthly 69 (1962), 360-364. · Zbl 0105.03602
[39] K. Tan, Various proofs of Newton’s theorem, Math. Mag. 39 (1966), no. 1, 45-58. · Zbl 0136.42304
[40] D. T. Walker, On the Diophantine equation mX 2 -nY 2 = ±1, Amer. Math. Monthly 74 (1967), 504-513. · Zbl 0154.29604
[41] D. Wei, On the Diophantine equation x 2 -Dy 2 = n, Sci. China Math. 56 (2013), no. 2, 227-238. · Zbl 1281.11026
[42] P. Yiu, Heronian triangles are lattice triangles, Amer. Math. Monthly 108 (2001), no. 3, 261-263. · Zbl 0989.11014
[43] P-Z. Yuan, D-invariants and the solvability of kx 2 -ly 2 = 1, 2, Japan. J. Math. (N.S.) 22 (1996), no. 2, 355-361. · Zbl 0871.11020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.