×

On the Diophantine equation \(x^2 - Dy^2 = n\). (English) Zbl 1281.11026

The author uses the method of his joint paper with F. Xu [Proc. Lond. Math. Soc. (3) 104, No. 5, 1019–1044 (2012; Zbl 1281.11065)] to obtain explicit conditions for the solvability of the title equation for \(n\in\mathbb Z\). In addition, they need to construct explicit abelian extensions of \(\mathbb Q(\sqrt D)\) corresponding to the idelic class groups. His main results cover the following two cases:
(1) \(D = pq\), where \(p, q \equiv 1 \bmod 4\) are distinct primes with \((\frac{q}{p}) = 1 \) and \((\frac{p}{q})_4 (\frac{q}{p})_4 = - 1\).
(2) \(D = 2p_1p_2\cdots p_m\), where \(p_i \equiv 1\bmod 8\), \(1\leq i\leq m\) are distinct primes and \(D = r^2+s^2\) with \(r, s \equiv \pm3 \bmod 8\).

MSC:

11D09 Quadratic and bilinear Diophantine equations
11R37 Class field theory

Citations:

Zbl 1281.11065

References:

[1] Brown E. Binary quadratic forms of determinant q. J Number Theory, 1972, 4: 408–410 · Zbl 0251.10019 · doi:10.1016/0022-314X(72)90033-9
[2] Burde K. Ein rationales biquadratisches Reziprozitätsgesetz. J Reine Angew Math, 1969, 235: 175–184 · Zbl 0169.36902
[3] Dickson L E. History of the Theory of Numbers. New York: Chelsea, 1920 · JFM 47.0888.08
[4] Dirichlet G L. Einige neue sätze über unbestimmte gleichungen. Kgl Preuss Akad d Wissensch, 1920, 1: 221–236
[5] Epstein P. Zur auflösbarkeit der gleichung x 2 Dy 2 = . J Reine Angew Math, 1934, 171: 243–252 · JFM 60.0119.02
[6] Harari D. Le défaut d’approximation forte pour les groups algébriques commutatifs. Algebra Number Theory, 2008, 2: 595–611 · Zbl 1194.14067 · doi:10.2140/ant.2008.2.595
[7] Ji C. Diophantine equations x 2 Dy 2 = ,{\(\pm\)}2, odd graphs, and their applications. J Number Theory, 2005, 114: 18–36 · Zbl 1076.11017 · doi:10.1016/j.jnt.2005.05.001
[8] Milne J S. Algebraic Geometry. Singapore: World Scientific Publishing Co., 1998
[9] Neukirch J, Schmidt A, Wingberg K. Cohomology of Number Fields. Grundlehren, vol. 323. New York: Springer, 2000 · Zbl 0948.11001
[10] Pall G. Discriminantal divisors of binary quadratic forms. J Number Theory, 1969, 1: 525–533 · Zbl 0186.08602 · doi:10.1016/0022-314X(69)90015-8
[11] Perron O. Die lehre von den kettenbruchen. New York: Chelsea, 1929 · JFM 55.0262.09
[12] Rédei L. Über die Pellsche gleichung t 2 du 2 = . J Reine Angew Math, 1935, 173: 193–221 · JFM 61.0138.02
[13] Scholz A. Über die Lösbarkeit der Gleichung t 2 Du 2 = . Math Z, 1935, 39: 95–111 · Zbl 0009.29402 · doi:10.1007/BF01201346
[14] Yokoi H. Solvability of Diophantine equation x 2 Dy 2 = {\(\pm\)}2 and new invariants for real quadratic fields. Nagoya Math J, 1994, 134: 137–149 · Zbl 0804.11025
[15] Wei D. On the sum of two integral squares in quadratic fields $\(\backslash\)mathbb{Q}(\(\backslash\)sqrt { \(\backslash\)pm p} )$ . Acta Arith, 2011, 147: 253–260 · Zbl 1323.11020 · doi:10.4064/aa147-3-5
[16] Wei D. On the sum of two integral squares in certain quadratic fields. ArXiv: 1005.0658, 2010
[17] Wei D, Xu F. Integral points for multi-norm tori. ArXiv: 1004.2608, 2010 · Zbl 1281.11065
[18] Wei D, Xu F. Integral points for groups of multiplicative type. ArXiv: 1004.2613, 2010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.