×

Sharper uncertainty principles in quaternionic Hilbert spaces. (English) Zbl 1463.47111

Summary: The uncertainty principle for quaternionic linear operators in quaternionic Hilbert spaces is established, which generalizes the result of Goh-Micchelli. It turns out that there appears an additional term given by a commutator that reflects the feature of quaternions. The result is further strengthened when one operator is self-adjoint, which extends under weaker conditions the uncertainty principle of Dang-Deng-Qian from complex numbers to quaternions. In particular, our results are applied to concrete settings related to quaternionic Fock spaces, quaternionic periodic functions, quaternion Fourier transforms, quaternion linear canonical transforms, and nonharmonic quaternion Fourier transforms.

MSC:

47B47 Commutators, derivations, elementary operators, etc.
42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
47A05 General (adjoints, conjugates, products, inverses, domains, ranges, etc.)
Full Text: DOI

References:

[1] HeisenbergW. Über den anschaulichen Inhalt der quantentheoretischen Kinematic und Mechanik. Zeit Physik. 1927;43:172‐198. · JFM 53.0853.05
[2] WeylW. The Theory of Groups and Quantum Mechanics. 2nd ed.New York, NY, USA: Dover; 1950.
[3] FollandGB, SitaramA. The uncertainty principle: a mathematical survey. J Fourier Anal Appl. 1997;3(3):207‐238. · Zbl 0885.42006
[4] CohenL. Time‐frequency analysis theory and applications. Prentice Hall; 1995.
[5] FollandGB. Harmonic Analysis in Phase Space, Annals of Mathematics Studies, 122. Princeton, NJ: Princeton University Press; 1989. · Zbl 0682.43001
[6] ThangaveluS. An Introduction to the Uncertainty Principle. Hardy’s Theorem on Lie Groups, Progress in Mathematics, 217. Birkhäuser. Boston; 2004. · Zbl 1188.43010
[7] BahriM, HitzerESM, HayashiA, AshinoR. An uncertainty principle for quaternion Fourier transform. Comput Math Appl. 2008;56(9):2398‐2410. · Zbl 1165.42310
[8] ChenL, KouKI, LiuM. Pitt’s inequality and the uncertainty principle associated with the quaternion Fourier transform. J Math Anal Appl.2015;423(1):681‐700. · Zbl 1425.42012
[9] FuY. Non‐harmonic quaternion Fourier transform and uncertainty principle. Int Trans Spec Funct. 2014;25(12):998‐1008. · Zbl 1302.42017
[10] HaouiYE, FahlaouiS. The uncertainty principle for the two‐sided quaternion fourier transform. Mediterr J Math. 2017;14(6):11. Art. 221. · Zbl 1382.42006
[11] HaouiYE, FahlaouiS, HitzerEMS. Generalized Uncertainty Principles Associated with the Quaternionic Offset Linear Canonical Transform, arXiv:1807.04068, 2019.
[12] HitzerEMS. Directional uncertainty principle for quaternion Fourier transform. Adv Appl Clifford Algebr. 2010;20(2):271‐284. · Zbl 1198.42006
[13] KouKI, LiuM, MoraisJ, ZouC. Envelope detection using generalized analytic signal in 2D QLCT domains. Multi Syst Signal Process. 2017;28(4):1343‐1366. · Zbl 1387.94040
[14] KouKI, OuJ, MoraisJ. Uncertainty principles associated with quaternionic linear canonical transforms. Math Methods Appl Sci. 2016;39(10):2722‐2736. · Zbl 1407.94037
[15] KouKI, YangY, ZouC. Uncertainty principle for measurable sets and signal recovery in quaternion domains. Math Methods Appl Sci. 2017;40(11):3892‐3900. · Zbl 1371.30044
[16] YangY, KouKI. Novel uncertainty principles associated with 2D quaternion Fourier transforms. Integral Trans Spec Funct.2016;27(3):213‐226. · Zbl 1333.62179
[17] ZhangY, LiB. Novel uncertainty principles for two‐sided quaternion linear canonical transform. Adv Appl Clifford Algebr. 2018;28(1):14. Art. 15. · Zbl 1392.81164
[18] YangY, DangP, QianT. Tighter uncertainty principles based on quaternion Fourier transform. Adv Appl Clifford Algebr. 2016;26(1):479‐497. · Zbl 1338.42013
[19] HorwitzLP, BiedenharnLC. Quaternion quantum mechanics: second quantization and gauge fields. Ann Phys Rehabil Med. 1984;157(2):432‐488. · Zbl 0558.46039
[20] MuraleetharanB, ThirulogasantharK, SabadiniI. A representation of Weyl‐Heisenberg Lie algebra in the quaternionic setting. Ann Phys Rehabil Med. 2017;385:180‐213. · Zbl 1372.81093
[21] BirkhoffG, vonNeumannJ. The logic of quantum mechanics. Ann Math. 1936;37(4):823‐843. · JFM 62.1061.04
[22] SolèrMP. Characterization of Hilbert spaces by orthomodular spaces. Comm Algebra. 1995;23(1):219‐243. · Zbl 0827.46019
[23] HollandSS. Orthomodularity in infinite dimensions; a theorem of M. Solèr. Bull Amer Math Soc. (N.S.)1995;32(2):205‐234. · Zbl 0856.11021
[24] PironC. Axiomatique quantique. Helv Phys Acta. 1964;37:439‐468. · Zbl 0141.23204
[25] StueckelbergECG. Quantum theory in real Hilbert space. Helv Phys Acta. 1960;33:727‐752. · Zbl 0097.42801
[26] AdlerS. Quaternionic Quantum Field Theory. Oxford University Press; 1995. · Zbl 0885.00019
[27] FinkelsteinD, JauchJM, SchiminovichS, SpeiserD. Foundations of quaternion quantum mechanics. J Math Phys. 1962;3:207‐220.
[28] GentiliG, StruppaDC. A new theory of regular functions of a quaternionic variable. Adv Math. 2007;216:279‐301. · Zbl 1124.30015
[29] ColomboF, SabadiniI, StruppaDC. Noncommutative Functional Calculus: Theory and Applications of Slice Hyperholomorphic Functions, Progress in Mathematics. 289Basel: Birkhäuser/Springer; 2011. · Zbl 1228.47001
[30] GohSS, MicchelliCA. Uncertainty principles in Hilbert spaces. J Fourier Anal Appl.2002;8(4):335‐373. · Zbl 1027.47028
[31] CohenL. The uncertainty principle in signal analysis. Proc IEEE ICASSP. 1994;182‐185.
[32] SeligKK. Uncertainty principles revisited. Electron Trans Numer Anal. 2002;14:165‐177. · Zbl 1046.47021
[33] DangP, DengG, QianT. A sharper uncertainty principle. J Funct Anal. 2013;265(10):2239‐2266. · Zbl 1284.42019
[34] GaoM. On Heisenberg’s inequality. J Math Anal Appl. 1999;234(2):727‐734. · Zbl 0955.26010
[35] ZhuK. Towards a dictionary for the Bargmann transform, arXiv:1506.06326, 2015.
[36] BreitenbergerE. Uncertainty measures and uncertainty relations for angle observables. Found Phys. 1985;15(3):353‐364.
[37] DangP. Tighter uncertainty principles for periodic signals in terms of frequency. Math Methods Appl. Sci.2015;38(2):365‐379. · Zbl 1361.94024
[38] GohSS, GoodmanTNT. Uncertainty principles and asymptotic behavior. Appl Comput Harmon Anal.2004;16(1):19‐43. · Zbl 1036.94529
[39] GhiloniR, MorettiV, PerottiA. Continuous slice functional calculus in quaternionic Hilbert spaces. Rev Math Phys. 2013;25(4):83. 1350006. · Zbl 1291.47008
[40] GentiliG, StoppatoC, StruppaDC. Regular Functions of a Quaternionic Variable, Springer Monographs in Mathematics. Berlin‐Heidelberg: Springer; 2013. · Zbl 1269.30001
[41] AlpayD, ColomboF, SabadiniI, SalomonG. The Fock space in the slice hyperholomorphic setting. Hypercomplex Analysis: New Perspectives and Applications Trends in Mathematics. 2014;43‐59. · Zbl 1314.30092
[42] KirwinWD, MourãoJ, NunesJP, QianT. Extending coherent state transforms to Clifford analysis. J Math Phys. 2016;57(10):10. 103505. · Zbl 1349.81088
[43] DikiK, GhanmiA. A quaternionic analogue of the Segal‐Bargmann transform. Comp Anal Oper Theory. 2017;11(2):457‐473. · Zbl 1364.44002
[44] BargmannV. On a Hilbert space of analytic functions and an associated integral transform. Comm Pure Appl Math. 1961;14:187‐214. · Zbl 0107.09102
[45] NarcowichFJ, WardJD. Wavelets associated with periodic basis functions. Appl Comput Harmon Anal. 1996;3(1):40‐56. · Zbl 0852.42023
[46] RenG, ChenQ, CerejeirasP, KähleU. Chirp transforms and chirp series. J Math Anal Appl.2011;373(2):356‐369. · Zbl 1200.42026
[47] RöslerM. An uncertainty principle for the Dunkl transform. Bull Austral Math Soc. 1999;59(3):353‐360. · Zbl 0939.33012
[48] deJeuMFE. The Dunkl transform. Invent Math. 1993;113:147‐162. · Zbl 0789.33007
[49] DunklCF. Hankel transforms associated to finite reflexion groups. Contemp Math. 1992;138:123‐138. · Zbl 0789.33008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.