×

A quaternionic analogue of the Segal-Bargmann transform. (English) Zbl 1364.44002

Authors’ summary: The Bargmann-Fock space of slice hyperholomorphic functions was recently introduced by Alpay, Colombo, Sabadini and Salomon. In this paper, we reconsider this space and present a direct proof of its independence of the slice. We also introduce a quaternionic analogue of the classical Segal-Bargmann transform and discuss some of its basic properties. The explicit expression of its inverse is obtained, and the connection to the left one-dimensional quaternionic Fourier transform is given.

MSC:

44A15 Special integral transforms (Legendre, Hilbert, etc.)
30H20 Bergman spaces and Fock spaces
32A17 Special families of functions of several complex variables
32A10 Holomorphic functions of several complex variables
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type

References:

[1] Alpay, D., Colombo, F., Sabadini, I., Salomon, G.: The Fock space in the slice hyperholomorphic Setting. In: Hypercomplex Analysis: New perspectives and applications. Trends Math. pp. 43-59 (2014) · Zbl 1314.30092
[2] Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Commun. Pure Appl. Math. 14, 187-214 (1961) · Zbl 0107.09102 · doi:10.1002/cpa.3160140303
[3] Colombo, F., Sabadini, I., Sommen, F.: The Fueter mapping theorem in integral form and the \[FF\]-functional calculus. Math. Methods Appl. Sci. 33, 2050-2066 (2010) · Zbl 1225.47019 · doi:10.1002/mma.1315
[4] Colombo, F., Sabadini, I., Sommen, F.: The inverse Fueter mapping theorem. Commun. Pure Appl. Anal. 10, 1165-1181 (2011) · Zbl 1258.30022 · doi:10.3934/cpaa.2011.10.1165
[5] Colombo, F., Sabadini, I., Struppa, D.C.: Noncommutative functional calculus, theory and applications of slice hyperholomorphic functions. Progr. Math., vol. 289. Birkhäuser, Basel (2011) · Zbl 1228.47001
[6] Ell, T.A., Le Bihan, N., Sangwine, S.J.: Quaternion Fourier transforms for signal and image processing, Focus Series in Digital Signal and Image Processing. John Wiley & Sons, Inc., Hoboken, NJ; ISTE, London (2014) · Zbl 1314.94004
[7] Gentili, G., Struppa, D.C.: A new approach to Cullen-regular functions of a quaternionic variable. C. R. Acad. Sci. Paris 342, 741-744 (2006) · Zbl 1105.30037 · doi:10.1016/j.crma.2006.03.015
[8] Gentili, G., Struppa, D.C.: A new theory of regular functions of a quaternionic variable. Adv. Math. 216, 279-301 (2007) · Zbl 1124.30015 · doi:10.1016/j.aim.2007.05.010
[9] Gentili, G., Stoppato, C., Struppa, D.C.: Regular functions of a quaternionic variable. Springer Monographs in Mathematics, Basel (2013) · Zbl 1269.30001 · doi:10.1007/978-3-642-33871-7
[10] Hall, B.C.: Bounds on the Segal-Bargmann transform of \[L^p\] Lp-functions. J. Fourier Anal. Appl. 7(6), 553-569 (2001) · Zbl 1003.44005 · doi:10.1007/BF02513076
[11] Lebedev, N.N.: Special Functions and Their Applications. Physico-Technical Institute, Academy of Sciences, U.S.S.R., Russia (1972) · Zbl 0271.33001
[12] Tobar, F.A., Mandic, D.P.: Quaternion reproducing kernel Hilbert spaces: existence and uniqueness conditions. Trans. Inf. Theory 60(9), 5736-5749 (2014) · Zbl 1360.62194 · doi:10.1109/TIT.2014.2333734
[13] Zhu, K.: Towards a dictionary for the Bargmann transform. arXiv:1506.06326 (2015) (preprint) · Zbl 1429.30053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.