×

Omni-representations of Leibniz algebras. (English) Zbl 07812205

Summary: In this paper, first we introduce the notion of an omni-representation of a Leibniz algebra \(g\) on a vector space \(V\) as a Leibniz algebra homomorphism from \(g\) to the omni-Lie algebra \(\mathfrak{gl} (V) \oplus V\). Then we introduce the omni-cohomology theory associated to omni-representations and establish the relation between omni-cohomology groups and Loday-Pirashvili cohomology groups.

MSC:

17B99 Lie algebras and Lie superalgebras
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)

References:

[1] J. Adashev, M. Ladra, and B. Omirov, The second cohomology group of simple Leibniz algebras, J. Algebra Appl. 17(12) (2018), 1850222. · Zbl 1462.17004
[2] D. Balavoine, Deformation of algebras over a quadratic operad, Contemporary Mathe-matics 202 (1997), 167-205.
[3] D. W. Barnes, Faithful representations of Leibniz algebras, Proc. Amer. Math. Soc. 141(9) (2013), 2991-2995. · Zbl 1280.17003
[4] S. Benayadi, On representations of symmetric Leibniz algebras, Glasg. Math. J. 62(S1) (2020), S99-S107. · Zbl 1477.17008
[5] A. Bloh, On a generalization of the concept of Lie algebra, Dokl. Akad. Nauk SSSR 165(3) (1965), 471-473. · Zbl 0139.25702
[6] L. M. Camacho, I. Kaygorodov, B. Omirov, and G. Solijanova, Some cohomologically rigid solvable Leibniz algebras, J. Algebra 560 (2020), 502-520. · Zbl 1450.17002
[7] Y. Cheng, L. Wu, and P. Wang, Rota-Baxter operators on 3-dimensional Lie algebras and solutions of the classical Yang-Baxter equation, Commun. Math. Res. 35 (2019), 81-96. · Zbl 1438.16060
[8] J. Feldvoss and F. Wagemann, On Leibniz cohomology, J. Algebra 569 (2021), 276-317. · Zbl 1465.17006
[9] A. Fialowski, L. Magnin, and A. Mandal, About Leibniz cohomology and deformations of Lie algebras, J. Algebra 383 (2013), 63-77. · Zbl 1362.17034
[10] A. Fialowski and A. Mandal, Leibniz algebra deformations of a Lie algebra, J. Math. Phys. 49(9) (2008), 093511. · Zbl 1152.81434
[11] N. Hu, Y. Pei, and D. Liu, A cohomological characterization of Leibniz central extensions of Lie algebras, Proc. Amer. Math. Soc. 136(2) (2008), 437-447. · Zbl 1140.17003
[12] M. K. Kinyon and A. Weinstein, Leibniz algebras, Courant algebroids, and multiplica-tions on reductive homogeneous spaces, Amer. J. Math. 123 (2001), 525-550. · Zbl 0986.17001
[13] P. S. Kolesnikov, Conformal representations of Leibniz algebras, Sib. Math. J. 49(3) (2008), 429-435. · Zbl 1164.17003
[14] Y. Kosmann-Schwarzbach, Courant algebroids. A short history, SIGMA Symmetry In-tegrability Geom. Methods Appl. 9 (2013), Paper 014. · Zbl 1268.01019
[15] A. Kotov and T. Strobl, The embedding tensor, Leibniz-Loday algebras, and their higher gauge theories, Comm. Math. Phys. 376(1) (2020), 235-258. · Zbl 1439.81076
[16] C. Laurent-Gengoux and F. Wagemann, Lie rackoids integrating Courant algebroids, Ann. Global Anal. Geom. 57(2) (2020), 225-256. · Zbl 1440.53091
[17] Z.-J. Liu, A. Weinstein, and P. Xu, Manin triples for Lie bialgebroids, J. Diff. Geom. 45 (1997), 547-574. · Zbl 0885.58030
[18] J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann. 296 (1993), 139-158. · Zbl 0821.17022
[19] D. Roytenberg, Courant Algebroids, Derived Brackets and Even Symplectic Supermani-folds, PhD Thesis, UC Berkeley, 1999.
[20] Y. Sheng, R. Tang, and C. Zhu, The controlling L ∞ -algebras, cohomologies and homotopy of embedding tensors and Lie-Leibniz triples, Comm. Math. Phys. 386 (2021), 269-304. · Zbl 1476.17015
[21] R. Tang and Y. Sheng, Leibniz bialgebras, relative Rota-Baxter operators and the classical Leibniz Yang-Baxter equation, J. Noncommut. Geom. 16 (4) (2022), 1179-1211. · Zbl 1518.17004
[22] A. Weinstein, Omni-Lie algebras, microlocal analysis of the Schrodinger equation and re-lated topics, S ūrikaisekikenky ūsho K ōky ūroku No. 1176 (2000), 95-102. (in Japanese) · Zbl 1058.58503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.