×

Faithful representations of Leibniz algebras. (English) Zbl 1280.17003

The paper is devoted to Leibniz algebras which present a non anti-symmetric generalization of Lie algebras. Equivalently, a (left) Leibniz algebra can be defined as a linear algebra \(L\) whose left multiplication operators \(d_a:L\rightarrow L\), defined by \(d_a(x)=ax\) for all \(a,x\in L\), are derivations.
A module for the Leibniz algebra \(L\) is a vector space \(V\) with two bilinear compositions \(xv\), \(vx\) for \(x\in L\) and \(v\in V\) such that \[ x(yv)=(xy)v+y(xv),\quad x(vy)=(xv)y+v(xy),\quad v(xy)=(vx)y+x(vy) \] for all \(x, y\in L\) and \(v\in V\). The main result of the present paper asserts that if \(L\) is an \(n\)-dimensional Leibniz algebra then there exists a faithful \(L\)-module of dimension less than or equal to \(n+1\) with some additional properties.

MSC:

17A32 Leibniz algebras

References:

[1] Sh. A. Ayupov and B. A. Omirov, On Leibniz algebras, Algebra and operator theory (Tashkent, 1997) Kluwer Acad. Publ., Dordrecht, 1998, pp. 1 – 12. · Zbl 0928.17001
[2] Donald W. Barnes, Ado-Iwasawa extras, J. Aust. Math. Soc. 78 (2005), no. 3, 407 – 421. · Zbl 1075.17006 · doi:10.1017/S1446788700008600
[3] D. W. Barnes, Schunck classes of soluble Leibniz algebras, arXiv:1101.3046 (2011). To appear in Comm. Algebra. · Zbl 1307.17001
[4] Donald W. Barnes and Humphrey M. Gastineau-Hills, On the theory of soluble Lie algebras, Math. Z. 106 (1968), 343 – 354. · Zbl 0164.03701 · doi:10.1007/BF01115083
[5] G. Hochschild, An addition to Ado’s theorem, Proc. Amer. Math. Soc. 17 (1966), 531 – 533. · Zbl 0143.05205
[6] Kenkichi Iwasawa, On the representation of Lie algebras, Jap. J. Math. 19 (1948), 405 – 426. · Zbl 0038.01301
[7] Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons), New York-London, 1962. · Zbl 0121.27504
[8] Jean-Louis Loday and Teimuraz Pirashvili, Leibniz representations of Lie algebras, J. Algebra 181 (1996), no. 2, 414 – 425. · Zbl 0855.17018 · doi:10.1006/jabr.1996.0127
[9] Alexandros Patsourakos, On nilpotent properties of Leibniz algebras, Comm. Algebra 35 (2007), no. 12, 3828 – 3834. · Zbl 1130.17002 · doi:10.1080/00927870701509099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.