×

Beyond the mean: a flexible framework for studying causal effects using linear models. (English) Zbl 1496.62202

Psychometrika 87, No. 3, 868-901 (2022); erratum ibid. 87, No. 3, 902 (2022).
Summary: Graph-based causal models are a flexible tool for causal inference from observational data. In this paper, we develop a comprehensive framework to define, identify, and estimate a broad class of causal quantities in linearly parametrized graph-based models. The proposed method extends the literature, which mainly focuses on causal effects on the mean level and the variance of an outcome variable. For example, we show how to compute the probability that an outcome variable realizes within a target range of values given an intervention, a causal quantity we refer to as the probability of treatment success. We link graph-based causal quantities defined via the do-operator to parameters of the model implied distribution of the observed variables using so-called causal effect functions. Based on these causal effect functions, we propose estimators for causal quantities and show that these estimators are consistent and converge at a rate of \(N^{-1/2}\) under standard assumptions. Thus, causal quantities can be estimated based on sample sizes that are typically available in the social and behavioral sciences. In case of maximum likelihood estimation, the estimators are asymptotically efficient. We illustrate the proposed method with an example based on empirical data, placing special emphasis on the difference between the interventional and conditional distribution.

MSC:

62P15 Applications of statistics to psychology
62D20 Causal inference from observational studies
62J05 Linear regression; mixed models
62H12 Estimation in multivariate analysis

References:

[1] Abadir, K. M., & Magnus, J. R. (2005). Matrix algebra. Cambridge University Press. doi:10.1017/CBO9780511810800 · Zbl 1084.15001
[2] Aldrich, J., Autonomy, Oxford Economic Papers, 4-1, 1, 15-34 (1989) · doi:10.1093/oxfordjournals.oep.a041889
[3] Alwin, DF; Hauser, RM, The decomposition of effects in path analysis, American Sociological Review, 40, 1, 37-47 (1975) · doi:10.2307/2094445
[4] Amemiya, T. (1985). Advanced econometrics (1st ed.). Harvard University Press.
[5] Athey, S.; Imbens, G., Recursive partitioning for heterogeneous causal effects, Proceedings of the National Academy of Sciences, 113, 27, 7353-7360 (2016) · Zbl 1357.62190 · doi:10.1073/pnas.1510489113
[6] Bekker, P. A., Merckens, A., & Wansbeek, T. J. (1994). Identification, equivalent models, and computer algebra. Academic Press. · Zbl 0866.90038
[7] Bhattacharya, R., Nabi, R., & Shpitser, I. (2020). Semiparametric inference for causal effects in graphical models with hidden variables. Retrieved fromhttps://arxiv.org/abs/2003.12659
[8] Bollen, KA, Total, direct, and indirect effects in structural equation models, Sociological Methodology, 17, 37-69 (1987) · doi:10.2307/271028
[9] Bollen, K. A. (1989). Structural equations with latent variables. John Wiley & Sons. doi:10.1002/9781118619179 · Zbl 0731.62159
[10] Bollen, KA, An alternative two-stage least squares (2SLS) estimator for latent variable equations, Psychometrika, 61, 1, 109-121 (1996) · Zbl 0875.62369 · doi:10.1007/BF02296961
[11] Bollen, KA, Latent variables in psychology and the social sciences, Annual Review of Psychology, 53, 605-634 (2002) · doi:10.1146/annurev.psych.53.100901.135239
[12] Bollen, KA; Bauldry, S., A note on algebraic solutions to identification, The Journal ofMathematical Sociology, 34, 2, 136-145 (2010) · Zbl 1194.62131 · doi:10.1080/00222500903221571
[13] Bollen, KA; Kolenikov, S.; Bauldry, S., Model-implied instrumental variable-generalized method of moments (MIIV-GMM) estimators for latent variable models, Psychometrika, 79, 1, 20-50 (2014) · Zbl 1284.62690 · doi:10.1007/s11336-013-9335-3
[14] Bollen, K. A., & Pearl, J. (2013). Eight myths about causality and structural equation models. In S. L. Morgan (Ed.), Handbook of causal analysis for social research (pp. 301-328). Springer. doi:10.1007/978-94-007-6094-3_15
[15] Borsboom, D.; Mellenbergh, GJ; van Heerden, J., The theoretical status of latent variables, Psychological Review, 110, 2, 203-19 (2003) · doi:10.1037/0033-295X.110.2.203
[16] Bowden, R. J., & Turkington, D. A. (1985). Instrumental variables. Cambridge University Press. doi:10.1017/CCOL0521262410 · Zbl 0744.62149
[17] Brito, C.; Pearl, J., A new identification condition for recursive models with correlated errors, Structural Equation Modeling: A Multidisciplinary Journal, 9, 4, 459-474 (2002) · doi:10.1207/S15328007SEM0904_1
[18] Brito, C., & Pearl, J. (2006). Graphical condition for identification in recursive SEM. In R. Dechter & T. S. Richardson (Eds.), Proceedings of the 23rd conference on uncertainty inartificial intelligence (pp. 47-54). AUAI Press.
[19] Browne, MW, Generalized least squares estimators in the analysis of covariance structures, South African Statistical Journal, 8, 1, 1-24 (1974) · Zbl 0281.62071 · doi:10.1002/j.2333-8504.1973.tb00197.x
[20] Browne, MW, Asymptotically distribution-free methods for the analysis of covari-ance structures, British Journal of Mathematical and Statistical Psychology, 37, 1, 62-83 (1984) · Zbl 0561.62054 · doi:10.1111/j.2044-8317.1984.tb00789.x
[21] Cartwright, N. (2009). Causality, invariance, and policy. In D. Ross & H. Kincaid (Eds.), The oxford handbook of philosophy of economics. Oxford University Press. doi:10.1093/oxfordhb/9780195189254.003.0015
[22] Casella, G., & Berger, R. (2002). Statistical inference. Duxbury.
[23] Chen, B., Tian, J., & Pearl, J. (2014). Testable implications of linear structural equation models. In Proceedings of the 28th AAAI conference on artificial intelligence (pp. 2424-2430). AAAI Press.
[24] Chernozhukov, V.; Fernández-Val, I.; Newey, W.; Stouli, S.; Vella, F., Semiparametric estimation of structural functions in nonseparable triangular models, Quantitative Economics, 11, 2, 503-533 (2020) · Zbl 1466.62276 · doi:10.3982/QE1239
[25] Cramér, H. (1946). Mathematical methods of statistics. Princeton University Press. · Zbl 0063.01014
[26] Dieudonné, J. (1969). Foundations of modern analysis. In Pure and applied mathematics. Academic Press. · Zbl 0176.00502
[27] Ding, P.; VanderWeele, TJ, Sensitivity analysis without assumptions, Epidemiology, 27, 3, 368-377 (2016) · doi:10.1097/EDE.0000000000000457
[28] Dorie, V.; Harada, M.; Carnegie, NB; Hill, J., A flexible, interpretable framework for assessing sensitivity to unmeasured confounding, Statistics in Medicine, 35, 20, 3453-3470 (2016) · doi:10.1002/sim.6973
[29] Drton, M.; Foygel, R.; Sullivant, S., Global identifiability of linear structural equation models, Annals of Statistics, 39, 2, 865-886 (2011) · Zbl 1215.62052 · doi:10.1214/10-AOS859
[30] Eberhardt, F., Glymour, C., & Scheines, R. (2005). On the number of experiments sufficient and in the worst case necessary to identify all causal relations among N variables (pp. 178-184). AUAI Press.
[31] Ernest, J.; Bühlmann, P., Marginal integration for nonparametric causal inference, Electronic Journal of Statistics, 9, 2, 3155-3194 (2015) · Zbl 1330.62171 · doi:10.1214/15-EJS1075
[32] Fisher, F. (1966). The identification problem in econometrics. McGraw-Hill.
[33] Franks, A., D’Amour, A., & Feller, A. (2020). Flexible sensitivity analysis for observational studies without observable implications. Journal of the American Statistical Association,115(532), 1730-1746. doi:10.1080/01621459.2019.1604369 · Zbl 1452.62177
[34] Gische, C.; West, SG; Voelkle, MC, Forecasting causal effects of interventions versus predicting future outcomes, Structural Equation Modeling: A Multidisciplinary Journal, 28, 3, 475-492 (2021) · doi:10.1080/10705511.2020.1780598
[35] Hamaker, EL; Kuiper, RM; Grasman, RPPP, A critique of the cross-lagged panel model, Psychological Methods, 20, 1, 102-116 (2015) · doi:10.1037/a0038889
[36] Hansen, LP, Large sample properties of generalized method of moments estimators, Econometrica, 50, 4, 1029-1054 (1982) · Zbl 0502.62098 · doi:10.2307/1912775
[37] Hauser, A.; Bühlmann, P., Jointly interventional and observational data: Estimation of interventional Markov equivalence classes of directed acyclic graphs, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 77, 1, 291-318 (2015) · Zbl 1414.62021 · doi:10.1111/rssb.12071
[38] Hausman, JA; Taylor, WE, Identification in linear simultaneous equations models with covariance restrictions: An instrumental variables interpretation, Econometrica, 51, 5, 1527-1549 (1983) · Zbl 0517.62107 · doi:10.2307/1912288
[39] Hayashi, F. (2011). Econometrics. Princeton University Press. · Zbl 0994.62107
[40] He, Y-B; Geng, Z., Active learning of causal networks with intervention experiments and optimal designs, Journal of Machine Learning Research, 9, 2523-2547 (2008) · Zbl 1225.68184
[41] He, Y-B; Jia, J., Counting and exploring sizes of Markov equivalence classes of directed acyclic graphs, Journal of Machine Learning, Research(16), 2589-2609 (2015) · Zbl 1351.68211
[42] Heckman, JJ; Pinto, R., Causal analysis after Haavelmo, Econometric Theory, 31, 1, 115-151 (2015) · Zbl 1329.62469 · doi:10.1017/S026646661400022X
[43] Hernán, M. A., & Robins, J. M. (2020). Causal inference: What if. Chapman & Hall / CRC.
[44] Holland, PW, Causal inference, path analysis, and recursive structural equations models, Sociological Methodology, 18, 449-484 (1988) · doi:10.2307/271055
[45] Hsiao, C. (1983). Identification. In Z. Griliches & M. D. Intriligator (Eds.), Handbook of econometrics. (Vol. 1). North-Holland. · Zbl 0582.62095
[46] Hyttinen, A.; Eberhardt, F.; Hoyer, PO, Experiment selection for causal discovery, Journal of Machine Learning Research, 14, 57, 3041-3071 (2013) · Zbl 1318.62175
[47] Imai, K.; Ratkovic, M., Estimating treatment effect heterogeneity in randomized program evaluation, The Annals of Applied Statistics, 7, 1, 443-470 (2013) · Zbl 1376.62036 · doi:10.1214/12-AOAS593
[48] Ito, K.; Wada, T.; Makimura, H.; Matsuoka, A.; Maruyama, H.; Saruta, T., Vector autoregressive modeling analysis of frequently sampled oral glucose tolerance test results, The Keio Journal of Medicine, 47, 1, 28-36 (1998) · doi:10.2302/kjm.47.28
[49] Jöreskog, KG, A general approach to confirmatory maximum likelihood factor analysis, ETS Research Bulletin Series, 1967, 2, 183-202 (1967) · doi:10.1002/j.2333-8504.1967.tb00991.x
[50] Jöreskog, KG; Lawley, DN, New methods in maximum likelihood factor analysis, British Journal of Mathematical and Statistical Psychology, 21, 1, 85-96 (1968) · doi:10.1111/j.2044-8317.1968.tb00399.x
[51] Kan, R., From moments of sum to moments of product, Journal of Multivariate Analysis, 99, 3, 542-554 (2008) · Zbl 1133.60307 · doi:10.1016/j.jmva.2007.01.013
[52] Kang, C.; Tian, J., Markov properties for linear causal models with correlated errors, Journal of Machine Learning Research, 10, 41-70 (2009) · Zbl 1235.68162
[53] Klein, AG; Muthén, BO, Quasi-maximum likelihood estimation of structural equation models with multiple interaction and quadratic effects, Multivariate Behavioral Research, 42, 4, 647-673 (2007) · doi:10.1080/00273170701710205
[54] Koster, JTA, On the validity of the Markov interpretation of path diagrams of Gaussian structural equations systems with correlated errors, Scandinavian Journal ofStatistics, 26, 3, 413-431 (1999) · Zbl 0947.60057 · doi:10.1111/1467-9469.00157
[55] Kuroki, M., & Cai, Z. (2007). Evaluation of the causal effect of control plans in nonrecursive structural equation models. In Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence (pp. 227-234). AUAI Press.
[56] Lee, S.-Y. (2007). Structural equation modeling: A Bayesian approach. John Wiley & Sons. · Zbl 1154.62022
[57] Lütkepohl, H. (1997). Handbook of matrices (1st ed.). Wiley. · Zbl 0856.15001
[58] Maathuis, MH; Kalisch, M.; Bühlmann, P., Estimating high-dimensional intervention effects from observational data, The Annals of Statistics, 37, 6, 3133-3164 (2009) · Zbl 1191.62118 · doi:10.1214/09-AOS685
[59] Magnus, JR; Neudecker, H., The commutation matrix: Some properties and applications, The Annals ofStatistics, 7, 2, 381-394 (1979) · Zbl 0414.62040 · doi:10.1214/aos/1176344621
[60] Magnus, J. R., & Neudecker, H. (1980). The elimination matrix: Some lemmas and applications (Other publications TiSEM). Tilburg, The Netherlands: Tilburg University, School of Economics and Management. Retrieved from https://pure.uvt.nl/ws/portalfiles/portal/649691/26951_6623.pdf · Zbl 0497.15014
[61] Magnus, J. R., & Neudecker, H. (1999). Matrix differential calculus with applications in statistics and econometrics (2nd ed.). Wiley. · Zbl 0912.15003
[62] Mann, HB; Wald, A., On stochastic limit and order relationships, The Annals of Mathematical Statistics, 14, 3, 217-226 (1943) · Zbl 0063.03774 · doi:10.1214/aoms/1177731415
[63] Matzkin, RL, Estimation of nonparametric models with simultaneity, Econometrica, 83, 1, 1-66 (2015) · Zbl 1410.62052 · doi:10.3982/ECTA9348
[64] Mouchart, M., Russo, F., & Wunsch, G. (2009). Structural modelling, exogeneity, and causality. In H. Engelhardt, H. Kohler, & A. Fürnkranz-Prskawetz (Eds.), Causal analysis in population studies (Vol. 23, pp. 59-82). Springer.
[65] Muthén, L. K., & Muthen, B. O. (1998-2017). Mplus user’s guide (8th ed.) [Computer software manual]. Los Angeles, CA. Retrieved from https://www.statmodel.com/
[66] Nie, X., & Wager, S. (2020, 09). Quasi-oracle estimation of heterogeneous treatment effects. Biometrika, 108(2), 299-319. doi:10.1093/biomet/asaa076 · Zbl 07458256
[67] Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference (1st.). Morgan Kaufmann. doi:10.1016/B978-0-08-051489-5.50001-1 · Zbl 0746.68089
[68] Pearl, J., Causal diagrams for empirical research, Biometrika, 82, 4, 669-688 (1995) · Zbl 0860.62045 · doi:10.1093/biomet/82.4.669
[69] Pearl, J. (2009). Causality (2nd ed.). Cambridge University Press. · Zbl 1188.68291
[70] Pearl, J. (2012). The causal foundations of structural equation modeling. In R. Hoyle (Ed.), Handbook ofstructural equation modeling (pp. 68-91). Guilford Press.
[71] Pearl, J., & Robins, J. M. (1995). Probabilistic evaluation of sequential plans from causal models with hidden variables. In P. Besnard & S. Hanks (Eds.), Uncertainty in artificial intelligence (pp. 444-453). Morgan Kaufmann.
[72] Perkovic, E. (2020). Identifying causal effects in maximally oriented partially directed acyclic graphs. In J. Peters & D. Sontag (Eds.), Proceedings of the 36th conference on uncertainty in artificial intelligence (UAI) (Vol. 124, pp. 530-539). PMLR.
[73] Peters, J.; Bühlmann, P.; Meinshausen, N., Causal inference by using invariant prediction: identification and confidence intervals, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78, 5, 947-1012 (2016) · Zbl 1414.62297 · doi:10.1111/rssb.12167
[74] Peters, J., Janzing, D., & Schölkopf, B. (2017). Elements ofcausal inference. The MIT Press. · Zbl 1416.62012
[75] Rao, C., Information and accuracy attainable in the estimation of statistical parameters, Bulletin ofthe Calcutta Mathematical Society, 37, 81-91 (1945) · Zbl 0063.06420
[76] Rao, C. (1973). Linear statistical inference and its applications (2nd ed.). Wiley. · Zbl 0256.62002
[77] Richardson, TS, Markov properties for acyclic directed mixed graphs, Scandinavian Journal ofStatistics, 30, 1, 145-157 (2003) · Zbl 1035.60005 · doi:10.1111/1467-9469.00323
[78] Richardson, TS; Spirtes, P., Ancestral graph Markov models. Annals ofStatistics, 30, 4, 962-1030 (2002) · Zbl 1033.60008 · doi:10.1214/aos/1031689015
[79] Robins, JM, A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect, Mathematical Modelling, 9-12, 7, 1393-1512 (1986) · Zbl 0614.62136 · doi:10.1016/0270-0255(86)90088-6
[80] Robins, JM, A graphical approach to the identification and estimation of causal parameters in mortality studies with sustained exposure periods, Journal of Chronic Diseases, 40, Suppl 2, 139-161 (1987) · doi:10.1016/s0021-9681(87)80018-8
[81] Robins, JM; Hernán, MA; Brumback, B., Marginal structural models and causal inference in epidemiology, Epidemiology, 11, 5, 550-560 (2000) · doi:10.1097/00001648-200009000-00011
[82] Robins, JM; Rotnitzky, A.; Zhao, LP, Estimation of regression coefficients when some regressors are not always observed, Journal of the American Statistical Association, 89, 427, 846-866 (1994) · Zbl 0815.62043 · doi:10.2307/2290910
[83] Rosenbaum, P. R. (2002). Observational studies (2nd ed.). Springer. doi:10.1007/978-1-4757-3692-2 · Zbl 0985.62091
[84] Rosenbaum, PR; Rubin, DB, The central role of the propensity score in observational studies for causal effects, Biometrika, 70, 1, 41-55 (1983) · Zbl 0522.62091 · doi:10.1093/biomet/70.1.41
[85] Rosseel, Y., lavaan: An R package for structural equation modeling, Journal ofStatistical Software, 48, 2, 1-36 (2012) · doi:10.18637/jss.v048.i02
[86] Sargan, D. (1988). Lectures on advanced econometric theory. Basil Blackwell.
[87] Satorra, A., & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. von Eye & C. Clogg (Eds.), Latent variables analysis: Applications for developmental research (pp. 399-419). Sage Publications.
[88] Schumacker, R., & Marcoulides, G. (1998). Interaction and nonlinear effects in structural equation modeling. Lawrence Erlbaum Associates.
[89] Serfling, R. (1980). Approximation theorems of mathematical statistics. John Wiley. doi:10.1002/9780470316481 · Zbl 0538.62002
[90] Shipley, B., Testing recursive path models with correlated errors using dseparation, Structural Equation Modeling: A Multidisciplinary Journal, 10, 2, 214-221 (2003) · doi:10.1207/S15328007SEM1002\_3
[91] Shpitser, I. (2018). Identification in graphical causal models. In M. Maathuis, M. Drton, S. Lauritzen, & M. Wainwright (Eds.), Handbook of graphical models (pp. 381-403). CRC Press. · Zbl 1418.62125
[92] Shpitser, I., & Pearl, J. (2006). Identification of conditional interventional distributions. In R. Dechter & T. S. Richardson (Eds.), Proceedings ofthe 22nd conference on uncertainty inartificial intelligence (pp. 437-444). AUAI Press.
[93] Shpitser, I., Richardson, T. S., & Robins, J. M. (2020). Multivariate counterfactual systems and causal graphical models. Preprint on arXiv. Retrieved from arXiv:2008.06017
[94] Sontakke, S. A., Mehrjou, A., Itti, L., & Schölkopf, B. (2020). Causal curiosity: RL agents discovering self-supervised experiments for causal representation learning. Preprint on arXiv. Retrieved from arXiv:2010.03110
[95] Spirtes, P., Glymour, C., & Scheines, R. (2001). Causation, prediction, and search (2nd ed.). The MIT Press. · Zbl 0806.62001
[96] Stolzenberg, RM, The measurement and decomposition of causal effects in nonlinear and nonadditive models, Sociological Methodology, 11, 459-488 (1980) · doi:10.2307/270872
[97] Theil, H. (1971). Principles ofeconometrics. Wiley. · Zbl 0221.62002
[98] Thoemmes, F.; Rosseel, Y.; Textor, J., Local fit evaluation of structural equation models using graphical criteria, Psychological Methods, 23, 1, 27-41 (2018) · doi:10.1037/met0000147
[99] Tian, J., & Pearl, J. (2002a). A general identification condition for causal effects. In Proceedings of the 18th national conference on artificial intelligence (pp. 567-573). AAAI Press / MIT Press.
[100] Tian, J., & Pearl, J. (2002b). On the testable implications of causal models with hidden variables. In A. Darwiche & N. Friedman (Eds.), Proceedings of the 18th conference on uncertainty in artificial intelligence (pp. 519-527). Morgan Kaufmann.
[101] Usami, S.; Murayama, K.; Hamaker, EL, A unified framework of longitudinal models to examine reciprocal relations, Psychological Methods, 24, 5, 637-57 (2019) · doi:10.1037/met0000210
[102] van Bork, R., Rhemtulla, M., Sijtsma, K., & Borsboom, D. (2020). A causal theory of error scores. Preprint on PsyArXiv. Retrieved from arXiv:2009.10025doi:10.31234/osf.io/h35sa
[103] van der Laan, M. J., & Rubin, D. (2006). Targeted maximum likelihood learning. The International Journal ofBiostatistics,2(1). doi:10.2202/1557-4679.1043
[104] Wager, S.; Athey, S., Estimation and inference of heterogeneous treatment effects using random forests, Journal of the American Statistical Association, 113, 523, 1228-1242 (2018) · Zbl 1402.62056 · doi:10.1080/01621459.2017.1319839
[105] Wald, A. (1950). Note on the identification of economic relations. In T. C. Koopmans (Ed.), Statistical inference in dynamic economic models. Wiley.
[106] Wall, MM; Amemiya, Y., A method of moments technique for fitting interaction effects in structural equation models, British Journal of Mathematical and Statistical Psychology, 56, 47-63 (2003) · doi:10.1348/000711003321645331
[107] West, S. G., Finch, J. F., & Curran, P. J. (1995). Structural equation models with nonnor-mal variables: Problems and remedies. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 56-75). SAGE.
[108] Wiley, D. (1973). The identification problem for structural equations with unmeasured variables. In A. Goldberger & O. Duncan (Eds.), Structural equation models in the social sciences (pp. 69-83). Academic Press.
[109] Wolfram Research Inc. (2018). Mathematica, Version 11.3 [Computer software manual]. Champaign, IL. Retrieved from https://www.wolfram.com/mathematica
[110] Xie, Y.; Brand, JE; Jann, B., Estimating heterogeneous treatment effects with observational data, Sociological Methodology, 42, 1, 314-347 (2012) · doi:10.1177/0081175012452652
[111] Yuan, K-H; Bentler, PM, Structural equation modeling with robust covariances, Sociological Methodology, 28, 1, 363-396 (1998) · doi:10.1111/0081-1750.00052
[112] Zehna, PW, Invariance of maximum likelihood estimators, The Annals of Mathematical Statistics, 37, 3, 744-744 (1966) · Zbl 0138.13203 · doi:10.1214/aoms/1177699475
[113] Zhang, J., Causal reasoning with ancestral graphs, Journal of Machine Learning Research, 9, 1437-1474 (2008) · Zbl 1225.68254
[114] Zyphur, M. J., Allison, P. D., Tay, L., Voelkle, M. C., Preacher, K. J., Zhang, Z., & Diener, E. (2019). From data to causes I: Building a general cross-lagged panel model (GCLM). Organizational Research Methods. doi:10.1177/1094428119847278
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.