×

Truncation invariant copulas and a testing procedure. (English) Zbl 1510.62226

Summary: The class of bivariate copulas that are invariant under truncation with respect to one variable is considered. A simulation algorithm for the members of the class and a novel construction method are presented. Moreover, inspired by a stochastic interpretation of the members of such a class, a procedure is suggested to check whether the dependence structure of a given data set is truncation invariant. The overall performance of the procedure has been illustrated on both simulated and real data.

MSC:

62H05 Characterization and structure theory for multivariate probability distributions; copulas
62G32 Statistics of extreme values; tail inference
62H20 Measures of association (correlation, canonical correlation, etc.)
62G10 Nonparametric hypothesis testing
62P05 Applications of statistics to actuarial sciences and financial mathematics

Software:

copula; R; QRM; CopulaModel; copula
Full Text: DOI

References:

[1] Hua L, Joe H. Tail comonotonicity: properties, constructions, and asymptotic additivity of risk measures. Insurance Math Econom. 2012;51(2):492-503. doi: 10.1016/j.insmatheco.2012.07.006[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1284.60104
[2] Gudendorf G, Segers J. Extreme-value copulas. In: Jaworski P, Durante F, Härdle WK, Rychlik T, editors. Copula theory and its applications. Vol. 198 of lecture notes in statistics. Proceedings. Berlin: Springer; 2010. p. 127-145. [Google Scholar]
[3] Li H. Toward a copula theory for multivariate regular variation. In: Jaworski P, Durante F, Härdle WK, editors. Copulae in mathematical and quantitative finance. Lecture notes in statistics. Berlin: Springer; 2013. p. 177-199. [Google Scholar] · Zbl 1273.62116
[4] Cook R, Johnson M. A family of distributions for modelling nonelliptically symmetric multivariate data. J R Stat Soc Ser B Stat Methodol. 1981;43(2):210-218. [Web of Science ®], [Google Scholar] · Zbl 0471.62046
[5] Genest C, MacKay RJ. Copules archimédiennes et familles de lois bidimensionnelles dont les marges sont données. Canad J Statist. 1986;14(2):145-159. doi: 10.2307/3314660[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0605.62049
[6] Oakes D. A model for association in bivariate survival data. J R Stat Soc Ser B Stat Methodol. 1982;44(3):414-422. [Web of Science ®], [Google Scholar] · Zbl 0503.62035
[7] Charpentier A, Juri A. Limiting dependence structures for tail events, with applications to credit derivatives. J Appl Probab. 2006;43(2):563-586. doi: 10.1239/jap/1152413742[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1117.62049
[8] Durante F, Jaworski P. Invariant dependence structure under univariate truncation. Statistics. 2012;46(2):263-277. doi: 10.1080/02331888.2010.512977[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1241.62083
[9] Juri A, Wüthrich MV. Copula convergence theorems for tail events. Insurance Math Econom. 2002;30(3):405-420. doi: 10.1016/S0167-6687(02)00121-X[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1039.62043
[10] Breymann W, Dias A, Embrechts P. Dependence structures for multivariate high-frequency data in finance. Quant Finance. 2003;3(1):1-14. doi: 10.1080/713666155[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1408.62173
[11] Durante F, Jaworski P, Mesiar R. Invariant dependence structures and Archimedean copulas. Statist Probab Lett. 2011;81(12):1995-2003. doi: 10.1016/j.spl.2011.08.018[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1225.62069
[12] Jaworski P. Invariant dependence structure under univariate truncation: the high-dimensional case. Statistics. 2013;47(5):1064-1074. doi: 10.1080/02331888.2012.664143[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1440.62184
[13] Jaworski P. The limiting properties of copulas under univariate conditioning. In: Jaworski P, Durante F, Härdle WK, editors. Copulae in mathematical and quantitative finance. Lecture notes in statistics. Berlin: Springer; 2013. p. 129-163. [Google Scholar] · Zbl 1273.62113
[14] Adrian T, Brunnermeier M. CoVar. New York (USA): Federal Reserve Bank of New York; 2008. [Google Scholar]
[15] Bernardi M, Gayraud G, Petrella L. Bayesian tail risk interdependence using quantile regression. Bayesian Anal. 2015;10(3):553-603. doi: 10.1214/14-BA911[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1335.62013
[16] Mainik G, Schaanning E. On dependence consistency of CoVaR and some other systemic risk measures. Stat Risk Model. 2014;31(1):49-77. [Google Scholar] · Zbl 1305.91248
[17] Jaworski P, Durante F, Härdle WK, Rychlik T, editors. Copula theory and its applications. Vol. 198 of lecture notes in statistics. Proceedings; Berlin: Springer; 2010. [Google Scholar] · Zbl 1194.62077
[18] Mai J-F, Scherer M. Simulating copulas. Series in quantitative finance, Vol. 4. London: Imperial College Press; 2012. [Crossref], [Google Scholar] · Zbl 1301.65001
[19] Jaworski P, Durante F, Härdle WK, editors. Copulae in mathematical and quantitative finance. Vol. 213 of lecture notes in statistics. Proceedings; Berlin: Springer; 2013. [Google Scholar] · Zbl 1268.91005
[20] Joe H. Dependence modeling with copulas. London: Chapman & Hall/CRC; 2014. [Crossref], [Google Scholar] · Zbl 1346.62001
[21] Durante F, Sempi C. Principles of copula theory. Boca Raton (FL): CRC/Chapman & Hall; 2015. [Crossref], [Google Scholar] · Zbl 1380.62008
[22] Jaworski P. Univariate conditioning of vine copulas. J Multivariate Anal. 2015;138:89-103. doi: 10.1016/j.jmva.2015.01.016[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1321.62055
[23] Durante F, Fernández-Sánchez J, Sempi C. Multivariate patchwork copulas: a unified approach with applications to partial comonotonicity. Insurance Math Econom. 2013;53:897-905. doi: 10.1016/j.insmatheco.2013.10.010[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1290.62040
[24] Durante F, Saminger-Platz S, Sarkoci P. Rectangular patchwork for bivariate copulas and tail dependence. Comm Statist Theory Methods. 2009;38(15):2515-2527. doi: 10.1080/03610920802571203[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1170.62329
[25] Mesiar R, Jágr V, Juráňová M, Komorníková M. Univariate conditioning of copulas. Kybernetika (Prague). 2008;44(6):807-816. [Web of Science ®], [Google Scholar] · Zbl 1196.62059
[26] Siburg KF, Stoimenov PA. Gluing copulas. Comm Statist Theory Methods. 2008;37(19):3124-3134. doi: 10.1080/03610920802074844[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1292.60025
[27] Dobrić J, Schmid F. A goodness of fit test for copulas based on Rosenblatt’s transformation. Comput Statist Data Anal. 2007;51(9):4633-4642. doi: 10.1016/j.csda.2006.08.012[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1162.62343
[28] Genest C, Ghoudi K, Rivest L-P. A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika. 1995;82(3):543-552. doi: 10.1093/biomet/82.3.543[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0831.62030
[29] Barbe P, Genest C, Ghoudi K, Rémillard B. On Kendall’s process. J Multivariate Anal. 1996;58(2):197-229. doi: 10.1006/jmva.1996.0048[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0862.60020
[30] Gijbels I, Omelka M, Sznajder D. Positive quadrant dependence tests for copulas. Canad J Statist. 2010;38(4):555-581. doi: 10.1002/cjs.10088[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1349.62152
[31] Gijbels I, Sznajder D. Positive quadrant dependence testing and constrained copula estimation. Canad J Statist. 2013;41(1):36-64. doi: 10.1002/cjs.11146[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1273.62125
[32] Gijbels I, Sznajder D. Testing tail monotonicity by constrained copula estimation. Insurance Math Econom. 2013;52(2):338-351. doi: 10.1016/j.insmatheco.2013.01.006[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1284.62313
[33] R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013. [Google Scholar]
[34] Hofert M, Kojadinovic I, Maechler M, Yan J. Copula: multivariate dependence with copulas. R package version 0.999-7; 2015. [Google Scholar]
[35] Cook RD, Johnson ME. Generalized Burr-Pareto-logistic distributions with applications to a uranium exploration data set. Technometrics. 1986;28(2):123-131. doi: 10.1080/00401706.1986.10488113[Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[36] Bücher A, Kojadinovic I. An overview of nonparametric tests of extreme-value dependence and of some related statistical procedures; 2014. ArXiv e-prints. [Google Scholar] · Zbl 1365.62174
[37] Pfaff B, Hofert M, McNeil A, Ulmann S. QRM: provides R-language code to examine quantitative risk management concepts. R package version 0.4-10; 2015. [Google Scholar]
[38] Genest C, Quessy J-F, Rémillard B. Goodness-of-fit procedures for copula models based on the probability integral transformation. Scand J Statist. 2006;33(2):337-366. doi: 10.1111/j.1467-9469.2006.00470.x[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1124.62028
[39] Durante F, Foscolo E, Jaworski P, Wang H. A spatial contagion measure for financial time series. Expert Syst Appl. 2014;41(8):4023-4034. doi: 10.1016/j.eswa.2013.12.020[Crossref], [Web of Science ®], [Google Scholar]
[40] Jaworski P, Pitera M. On spatial contagion and multivariate GARCH models. Appl Stoch Models Bus Ind. 2014;30:303-327. doi: 10.1002/asmb.1977[Crossref], [Web of Science ®], [Google Scholar] · Zbl 07879464
[41] Dvoretzky A, Kiefer J, Wolfowitz J. Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. Ann Math Stat. 1956;27:642-669. doi: 10.1214/aoms/1177728174[Crossref], [Google Scholar] · Zbl 0073.14603
[42] Kiefer J, Wolfowitz J. On the deviations of the empiric distribution function of vector chance variables. Trans Am Math Soc. 1958;87:173-186. doi: 10.1090/S0002-9947-1958-0099075-1[Crossref], [Google Scholar] · Zbl 0088.11305
[43] Hoeffding W. Probability inequalities for sums of bounded random variables. J Am Stat Assoc. 1963;58:13-30. doi: 10.1080/01621459.1963.10500830[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 0127.10602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.