×

Positive quadrant dependence testing and constrained copula estimation. (English. French summary) Zbl 1273.62125

Summary: Positive quadrant dependence is a specific dependence structure that is of practical importance in for example modelling dependencies in insurance and actuarial sciences. This dependence structure imposes a constraint on the copula function. The interest in this paper is to test for positive quadrant dependence. One way to assess the distribution of the test statistics under the null hypothesis of positive quadrant dependence is to resample from a constrained copula. This requires constrained estimation of a copula function. We show that this use of resampling under a constrained copula improves considerably the power performance of existing testing procedures.
We propose two resampling procedures, one based on a parametric constrained copula estimation and one relying on nonparametric estimation of a positive quadrant dependence copula, and discuss their properties. The finite-sample performances of the resulting testing procedures are evaluated via a simulation study that also includes comparisons with existing tests. Finally, a data set of Danish fire insurance claims is tested for positive quadrant dependence.

MSC:

62H15 Hypothesis testing in multivariate analysis
62G09 Nonparametric statistical resampling methods
62H20 Measures of association (correlation, canonical correlation, etc.)
65C60 Computational problems in statistics (MSC2010)
62G05 Nonparametric estimation

Software:

R; copula; copula
Full Text: DOI

References:

[1] Chernozhukov, V., Fernández‐Val, I., & Galichon, A. (2009). Improving point and interval estimators of monotone functions by rearrangement. Biometrika, 96, 559-575. · Zbl 1170.62025
[2] Cherubini, U., Luciano, E., & Vecchiato, W. (2004). Copula Methods in Finance, John Wiley and Sons, Chichester, England. · Zbl 1163.62081
[3] Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65, 141-151. · Zbl 0394.92021
[4] Deheuvels, P. (1979). La fonction de dépendance empirique et ses propriétés. Academie Royale de Belgique, Bulletin de la Classe des Sciences, 5e Série, 65, 274-292. · Zbl 0422.62037
[5] Denuit, M. & Scaillet, O. (2004). Nonparametric tests for positive quadrant dependence. Journal of Financial Econometrics, 2(3), 422-450.
[6] Dette, H., Neumeyer, N., & Pilz, K. F. (2006). A simple nonparametric estimator of a strictly monotone regression function. Bernoulli, 12, 469-490. · Zbl 1100.62045
[7] Dette, H. & Volgushev, S. (2008). Non‐crossing non‐parametric estimates of quantile curves. Journal of the Royal Statistical Society Series B, 70, 609-627. · Zbl 05563361
[8] Ebrahimi, N. (1993). Estimating a bivariate survial function and its marginals under positive quadrant dependence. Journal of Statistical Computation and Simulation, 47(1), 25-35.
[9] Embrechts, P., Klüppelberg, C., & Mikosch, T. (1997). Modelling Extremal Events for Insurance and Finance, Springer, Germany. · Zbl 0873.62116
[10] Fan, J. & Gijbels, I. (1996). Local Polynomial Modelling and Its Applications, CRC Press, London, UK. · Zbl 0873.62037
[11] Fermanian, J.‐D., Radulović, D., & Wegkamp, M. (2004). Weak convergence of empirical copula processes. Bernoulli, 10(5), 847-860. · Zbl 1068.62059
[12] Fils‐Villetard, A., Guillou, A., & Segers, J. (2008). Projection estimators of Pickands dependence function. The Canadian Journal of Statistics, 36(3), 369-382. · Zbl 1153.62044
[13] Fougères, A.‐L. (1997). Estimation de densités unimodal. The Canadian Journal of Statistics, 25, 375-387. · Zbl 0948.62023
[14] Frank, M. J. (1979). On the simultaneous associativity of \(F(x,y)\) and \(x+y-F(x,y)\). Aequationes Math, 19, 194-226. · Zbl 0444.39003
[15] Genest, C. (1987). Frank’s family of bivariate distributions. Biometrika, 74(3), 549-555. · Zbl 0635.62038
[16] Genest, C., Ghoudi, K., & Rivest, L.‐P. (1995). A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika, 82, 543-552. · Zbl 0831.62030
[17] Genest, C., Rémillard, B., & Beaudoin, D. (2009). Goodness‐of‐fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics, 44, 199-213. · Zbl 1161.91416
[18] Gijbels, I. & Mielniczuk, J. (1990). Estimating the density of a copula function. Communications in Statistics—Theory and Methods, 19(2), 445-464. · Zbl 0900.62188
[19] Gijbels, I., Omelka, M., & Sznajder, D. (2010). Positive quadrant dependence tests for copulas. The Canadian Journal of Statistics, 38(4), 555-581. · Zbl 1349.62152
[20] Janic‐Wróblewska, A., Kallenberg, W. C. M., & Ledwina, T. (2004). Detecting positive quadrant dependence and positive function dependence. Insurance: Mathematics and Economics, 34, 467-487. · Zbl 1188.91236
[21] Kojadinovic, I. & Yan, J. (2011). A goodness‐of‐fit test for multivariate multiparameter copulas based on multiplier central limit theorems. Statistics and Computing, 21(1), 17-30. · Zbl 1274.62400
[22] Lehmann, E. L. (1966). Some concepts of dependence. The Annals of Mathematical Statistics, 37(5), 1137-1153. · Zbl 0146.40601
[23] Lieb, E. H. & Loss, M. (2001). Analysis, Graduate Studies in Mathematics, 2nd ed., American Mathematical Society, Rhode Island, USA. · Zbl 0966.26002
[24] Mardia, K. V. (1970). A translation family of bivariate distributions and Frechet bounds. Sankhyā: The Indian Journal of Statistics Series A, 32(1), 119-122. · Zbl 0205.46602
[25] McNeil, A. J. (1997). Estimating the tails of loss severity distributions using extreme value theory. Astin Bulletin, 27(1), 117-137.
[26] Nelsen, R. B. (2006). An Introduction to Copulas, Lecture Notes in Statistics, Springer, New York, USA. · Zbl 1152.62030
[27] Omelka, M., Gijbels, I., & Veraverbeke, N. (2009). Improved kernel estimation of copulas: Weak convergence and goodness‐of‐fit testing. The Annals of Statistics, 37(5B), 3023-3058. · Zbl 1360.62160
[28] R Development Core Team. (2008). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3‐900051‐07‐0, http://www.R‐project.org
[29] Scaillet, O. (2004). Nonparametric estimation and sensivity analysis of expected shortfall. Mathematical Finance, 14(1), 115-129. · Zbl 1097.91049
[30] Scaillet, O. (2005). A Kolmogorov-Smirnov type test for positive quadrant dependence. The Canadian Journal of Statistics, 33, 415-427. · Zbl 1077.62036
[31] Segers, J. (2012). Asymptotics of empirical copula processes under non‐restrictive smoothness assumptions. Bernoulli, 18(3), 764-782. · Zbl 1243.62066
[32] Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de L’Université de Paris, 8, 229-231. · Zbl 0100.14202
[33] Yan, J. (2007). Enjoy the joy of copulas: With a package copula. Journal of Statistical Software, 21(4), 1-21.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.