×

Critical window variable selection for mixtures: estimating the impact of multiple air pollutants on stillbirth. (English) Zbl 1498.62267

Summary: Understanding the role of time-varying pollution mixtures on human health is critical as people are simultaneously exposed to multiple pollutants during their lives. For vulnerable subpopulations who have well-defined exposure periods (e.g., pregnant women), questions regarding critical windows of exposure to these mixtures are important for mitigating harm. We extend critical window variable selection (CWVS) to the multipollutant setting by introducing CWVS for mixtures (CWVSmix), a hierarchical Bayesian method that combines smoothed variable selection and temporally correlated weight parameters to: (i) identify critical windows of exposure to mixtures of time-varying pollutants, (ii) estimate the time-varying relative importance of each individual pollutant and their first order interactions within the mixture, and (iii) quantify the impact of the mixtures on health. Through simulation we show that CWVSmix offers the best balance of performance in each of these categories in comparison to competing methods. Using these approaches, we investigate the impact of exposure to multiple ambient air pollutants on the risk of stillbirth in New Jersey, 2005–2014. We find consistent elevated risk in gestational weeks 2, 16–17, and 20 for non-Hispanic Black mothers, with pollution mixtures dominated by ammonium (weeks 2, 17, 20), nitrate (weeks 2, 17), nitrogen oxides (weeks 2, 16), PM\({}_{2.5}\) (week 2), and sulfate (week 20). The method is available in the R package CWVSmix.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62F15 Bayesian inference
62P12 Applications of statistics to environmental and related topics

Software:

R; CWVSmix

References:

[1] ANTONELLI, J., MAZUMDAR, M., BELLINGER, D., CHRISTIANI, D., WRIGHT, R. and COULL, B. (2020). Estimating the health effects of environmental mixtures using Bayesian semiparametric regression and sparsity inducing priors. Ann. Appl. Stat. 14 257-275. · Zbl 1439.62215 · doi:10.1214/19-AOAS1307
[2] Barbieri, M. M. and Berger, J. O. (2004). Optimal predictive model selection. Ann. Statist. 32 870-897. · Zbl 1092.62033 · doi:10.1214/009053604000000238
[3] BEKKAR, B., PACHECO, S., BASU, R. and DENICOLA, N. (2020). Association of air pollution and heat exposure with preterm birth, low birth weight, and stillbirth in the US: A systematic review. JAMA Netw. Open 3 e208243. · doi:10.1001/jamanetworkopen.2020.8243
[4] BELLO, G. A., ARORA, M., AUSTIN, C., HORTON, M. K., WRIGHT, R. O. and GENNINGS, C. (2017). Extending the distributed lag model framework to handle chemical mixtures. Environ. Res. 156 253-264. · doi:10.1016/j.envres.2017.03.031
[5] BRUNEKREEF, B. and HOLGATE, S. T. (2002). Air pollution and health. Lancet 360 1233-1242.
[6] CARRICO, C., GENNINGS, C., WHEELER, D. C. and FACTOR-LITVAK, P. (2015). Characterization of weighted quantile sum regression for highly correlated data in a risk analysis setting. J. Agric. Biol. Environ. Stat. 20 100-120. · Zbl 1325.62208 · doi:10.1007/s13253-014-0180-3
[7] CHANG, H. H., WARREN, J. L., DARROW, L. A., REICH, B. J. and WALLER, L. A. (2015). Assessment of critical exposure and outcome windows in time-to-event analysis with application to air pollution and preterm birth study. Biostatistics 16 509-521. · doi:10.1093/biostatistics/kxu060
[8] CHEN, Y.-H., MUKHERJEE, B. and BERROCAL, V. J. (2019). Distributed lag interaction models with two pollutants. J. R. Stat. Soc. Ser. C. Appl. Stat. 68 79-97.
[9] COLICINO, E., PEDRETTI, N. F., BUSGANG, S. A. and GENNINGS, C. (2020). Per-and poly-fluoroalkyl substances and bone mineral density: Results from the Bayesian weighted quantile sum regression. Environ. Epidemiol. 4.
[10] DAVALOS, A. D., LUBEN, T. J., HERRING, A. H. and SACKS, J. D. (2017). Current approaches used in epidemiologic studies to examine short-term multipollutant air pollution exposures. Ann. Epidemiol. 27 145-153. · doi:10.1016/j.annepidem.2016.11.016
[11] DOMINICI, F., PENG, R. D., BARR, C. D. and BELL, M. L. (2010). Protecting human health from air pollution: Shifting from a single-pollutant to a multi-pollutant approach. Epidemiology 21 187.
[12] FAIZ, A. S., RHOADS, G. G., DEMISSIE, K., KRUSE, L., LIN, Y. and RICH, D. Q. (2012). Ambient air pollution and the risk of stillbirth. Am. J. Epidemiol. 176 308-316.
[13] FERRARI, F. and DUNSON, D. B. (2020). Identifying main effects and interactions among exposures using Gaussian processes. Ann. Appl. Stat. 14 1743-1758. · Zbl 1498.62212 · doi:10.1214/20-AOAS1363
[14] FERRARI, F. and DUNSON, D. B. (2021). Bayesian Factor Analysis for Inference on Interactions. J. Amer. Statist. Assoc. 116 1521-1532. · Zbl 1510.62135 · doi:10.1080/01621459.2020.1745813
[15] GENNINGS, C., CURTIN, P., BELLO, G., WRIGHT, R., ARORA, M. and AUSTIN, C. (2020). Lagged WQS regression for mixtures with many components. Environ. Res. 86 109529.
[16] GEWEKE, J. et al. (1991). Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments 196. Federal Reserve Bank of Minneapolis, Research Department Minneapolis, Minneapolis, MN, USA.
[17] GREEN, R., SAROVAR, V., MALIG, B. and BASU, R. (2015). Association of stillbirth with ambient air pollution in a California cohort study. Am. J. Epidemiol. 181 874-882.
[18] HORTON, R. and SAMARASEKERA, U. (2016). Stillbirths: Ending an epidemic of grief. Lancet 387 515-516. · doi:10.1016/S0140-6736(15)01276-3
[19] HOYERT, D. L. and GREGORY, E. C. W. (2016). Cause of fetal death: Data from the fetal death report, 2014. Natl. Vital Stat. Rep. 65 1-25.
[20] KAMPA, M. and CASTANAS, E. (2008). Human health effects of air pollution. Environ. Pollut. 151 362-367.
[21] Lim, M. and Hastie, T. (2015). Learning interactions via hierarchical group-lasso regularization. J. Comput. Graph. Statist. 24 627-654. · doi:10.1080/10618600.2014.938812
[22] LIU, S. H., BOBB, J. F., LEE, K. H. et al. (2018a). Lagged kernel machine regression for identifying time windows of susceptibility to exposures of complex mixtures. Biostatistics 19 325-341. · doi:10.1093/biostatistics/kxx036
[23] LIU, S. H., BOBB, J. F., CLAUS HENN, B., SCHNAAS, L., TELLEZ-ROJO, M. M., GENNINGS, C., ARORA, M., WRIGHT, R. O., COULL, B. A. et al. (2018b). Modeling the health effects of time-varying complex environmental mixtures: Mean field variational Bayes for lagged kernel machine regression. Environmetrics 29 e2504. · doi:10.1002/env.2504
[24] POPE, D. P., MISHRA, V., THOMPSON, L., SIDDIQUI, A. R., REHFUESS, E. A., WEBER, M. and BRUCE, N. G. (2010). Risk of low birth weight and stillbirth associated with indoor air pollution from solid fuel use in developing countries. Epidemiol. Rev. 32 70-81. · doi:10.1093/epirev/mxq005
[25] REICH, B. J., GUAN, Y., FOURCHES, D., WARREN, J. L., SARNAT, S. E. and CHANG, H. H. (2020). Integrative statistical methods for exposure mixtures and health. Ann. Appl. Stat. 14 1945-1963. · Zbl 1498.62290 · doi:10.1214/20-AOAS1364
[26] RENZETTI, S., CURTIN, P., JUST, A. C., BELLO, G. and GENNINGS, C. (2020). gWQS: Generalized Weighted Quantile Sum Regression. R package version 3.0.0.
[27] SENTHILKUMAR, N., GILFETHER, M., METCALF, F., RUSSELL, A. G., MULHOLLAND, J. A. and CHANG, H. H. (2019). Application of a fusion method for gas and particle air pollutants between observational data and chemical transport model simulations over the contiguous United States for 2005-2014. Int. J. Environ. Res. Public Health 16 3314.
[28] SIDDIKA, N., BALOGUN, H. A., AMEGAH, A. K. and JAAKKOLA, J. J. (2016). Prenatal ambient air pollution exposure and the risk of stillbirth: Systematic review and meta-analysis of the empirical evidence. Occup. Environ. Med. 73 573-581.
[29] STIEB, D. M., CHEN, L., ESHOUL, M. and JUDEK, S. (2012). Ambient air pollution, birth weight and preterm birth: A systematic review and meta-analysis. Environ. Res. 117 100-111.
[30] STRAND, L. B., BARNETT, A. G. and TONG, S. (2011). Methodological challenges when estimating the effects of season and seasonal exposures on birth outcomes. BMC Med. Res. Methodol. 11 49. · doi:10.1186/1471-2288-11-49
[31] WACKERNAGEL, H. (2013). Multivariate Geostatistics: An Introduction with Applications. Springer, Berlin.
[32] WARREN, J. L., LUBEN, T. J. and CHANG, H. H. (2020). A spatially varying distributed lag model with application to an air pollution and term low birth weight study. J. R. Stat. Soc. Ser. C. Appl. Stat. 69 681-696.
[33] WARREN, J., FUENTES, M., HERRING, A. and LANGLOIS, P. (2012a). Bayesian spatial-temporal model for cardiac congenital anomalies and ambient air pollution risk assessment. Environmetrics 23 673-684. · doi:10.1002/env.2174
[34] WARREN, J., FUENTES, M., HERRING, A. and LANGLOIS, P. (2012b). Spatial-temporal modeling of the association between air pollution exposure and preterm birth: Identifying critical windows of exposure. Biometrics 68 1157-1167. · Zbl 1259.62106 · doi:10.1111/j.1541-0420.2012.01774.x
[35] WARREN, J. L., STINGONE, J. A., HERRING, A. H. et al. (2016). Bayesian multinomial probit modeling of daily windows of susceptibility for maternal \[{\text{PM}_{2.5}}\] exposure and congenital heart defects. Stat. Med. 35 2786-2801. · doi:10.1002/sim.6891
[36] WARREN, J. L., SON, J.-Y., PEREIRA, G., LEADERER, B. P. and BELL, M. L. (2017). Investigating the impact of maternal residential mobility on identifying critical windows of susceptibility to ambient air pollution during pregnancy. Am. J. Epidemiol. 187 992-1000.
[37] Warren, J. L., Kong, W., Luben, T. J. and Chang, H. H. (2020). Critical window variable selection: Estimating the impact of air pollution on very preterm birth. Biostatistics 21 790-806. · doi:10.1093/biostatistics/kxz006
[38] WARREN, J. L., CHANG, H. H., WARREN, L. K., STRICKLAND, M. J., DARROW, L. A. and MULHOLLAND, J. A. (2022). Supplement to “Critical window variable selection for mixtures: Estimating the impact of multiple air pollutants on stillbirth.” https://doi.org/10.1214/21-AOAS1560SUPPA, https://doi.org/10.1214/21-AOAS1560SUPPB
[39] Wilson, A., Chiu, Y.-H. M., Hsu, H.-H. L., Wright, R. O., Wright, R. J. and Coull, B. A. (2017). Bayesian distributed lag interaction models to identify perinatal windows of vulnerability in children’s health. Biostatistics 18 537-552. · doi:10.1093/biostatistics/kxx002
[40] WILSON, A., HSU, H.-H. L., CHIU, Y.-H. M., WRIGHT, R. O., WRIGHT, R. J. and COULL, B. A. (2019). Kernel machine and distributed lag models for assessing windows of susceptibility to mixtures of time-varying environmental exposures in children’s health studies. ArXiv Preprint. Available at arXiv:1904.12417. · Zbl 1498.62269
[41] ZHANG, H., ZHANG, X., WANG, Q., XU, Y., FENG, Y., YU, Z. and HUANG, C. (2021). Ambient air pollution and stillbirth: An updated systematic review and meta-analysis of epidemiological studies. Environ. Pollut. 116752
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.