×

Kernel machine and distributed lag models for assessing windows of susceptibility to environmental mixtures in children’s health studies. (English) Zbl 1498.62269

Summary: Exposures to environmental chemicals during gestation can alter health status later in life. Most studies of maternal exposure to chemicals during pregnancy have focused on a single chemical exposure observed at high temporal resolution. Recent research has turned to focus on exposure to mixtures of multiple chemicals, generally observed at a single time point. We consider statistical methods for analyzing data on chemical mixtures that are observed at a high temporal resolution. As motivation, we analyze the association between exposure to four ambient air pollutants observed weekly throughout gestation and birth weight in a Boston-area prospective birth cohort. To explore patterns in the data, we first apply methods for analyzing data on: (1) a single chemical observed at high temporal resolution, and (2) a mixture measured at a single point in time. We highlight the shortcomings of these approaches for temporally-resolved data on exposure to chemical mixtures. Second, we propose a novel method, a Bayesian kernel machine regression distributed lag model (BKMR-DLM) that simultaneously accounts for nonlinear associations and interactions among time-varying measures of exposure to mixtures. BKMR-DLM uses a functional weight for each exposure that parameterizes the window of susceptibility corresponding to that exposure within a kernel machine framework that captures nonlinear and interaction effects of the multivariate exposure on the outcome. In a simulation study we show that the proposed method can better estimate the exposure-response function and, in high signal settings, can identify critical windows in time during which exposure has an increased association with the outcome. Applying the proposed method to the Boston birth cohort data, we find evidence of a negative association between organic carbon and birth weight and that nitrate modifies the organic carbon, elemental carbon, and sulfate exposure-response functions.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62P12 Applications of statistics to environmental and related topics

References:

[1] BAUER, J. A., CLAUS HENN, B., AUSTIN, C., ZONI, S., FEDRIGHI, C., CAGNA, G., PLACIDI, D., WHITE, R. F., YANG, Q. et al. (2017). Manganese in teeth and neurobehavior: Sex-specific windows of susceptibility. Environ. Int. 108 299-308. · doi:10.1016/j.envint.2017.08.013
[2] BELLO, G. A., ARORA, M., AUSTIN, C., HORTON, M. K., WRIGHT, R. O. and GENNINGS, C. (2017). Extending the distributed lag model framework to handle chemical mixtures. Environ. Res. 156 253-264. · doi:10.1016/j.envres.2017.03.031
[3] BOBB, J. F. (2017). bkmr: Bayesian kernel machine regression.
[4] BOBB, J. F., VALERI, L., CLAUS HENN, B., CHRISTIANI, D. C., WRIGHT, R. O., MAZUMDAR, M., GODLESKI, J. J. and COULL, B. A. (2015). Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 16 493-508. · doi:10.1093/biostatistics/kxu058
[5] BOBB, J. F., CLAUS HENN, B., VALERI, L. and COULL, B. A. (2018). Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression. Environ. Health 17 67. · doi:10.1186/s12940-018-0413-y
[6] BOSE, S., CHIU, Y.-H. M., HSU, H.-H. L., DI, Q., ROSA, M. J., LEE, A., KLOOG, I., WILSON, A., SCHWARTZ, J. et al. (2017). Prenatal nitrate exposure and childhood asthma. Influence of maternal prenatal stress and fetal sex. Am. J. Respir. Crit. Care Med. 196 1396-1403. · doi:10.1164/rccm.201702-0421OC
[7] BRAUN, J. M., GENNINGS, C., HAUSER, R. and WEBSTER, T. F. (2016). What can epidemiological studies tell us about the impact of chemical mixtures on human health? Environ. Health Perspect. 124 A6-A9. · doi:10.1289/ehp.1510569
[8] CARRICO, C., GENNINGS, C., WHEELER, D. C. and FACTOR-LITVAK, P. (2015). Characterization of weighted quantile sum regression for highly correlated data in a risk analysis setting. J. Agric. Biol. Environ. Stat. 20 100-120. · Zbl 1325.62208 · doi:10.1007/s13253-014-0180-3
[9] CHANG, H. H., REICH, B. J. and MIRANDA, M. L. (2012). Time-to-event analysis of fine particle air pollution and preterm birth: Results from North Carolina, 2001-2005. Am. J. Epidemiol. 175 91-98. · doi:10.1093/aje/kwr403
[10] CHANG, H. H., WARREN, J. L., DARROW, L. A., REICH, B. J. and WALLER, L. A. (2015). Assessment of critical exposure and outcome windows in time-to-event analysis with application to air pollution and preterm birth study. Biostatistics 16 509-521. · doi:10.1093/biostatistics/kxu060
[11] CHEN, Y.-H., MUKHERJEE, B. and BERROCAL, V. J. (2019). Distributed lag interaction models with two pollutants. J. R. Stat. Soc. Ser. C. Appl. Stat. 68 79-97.
[12] CHEN, Y.-H., MUKHERJEE, B., ADAR, S. D., BERROCAL, V. J. and COULL, B. A. (2018). Robust distributed lag models using data adaptive shrinkage. Biostatistics 19 461-478. · doi:10.1093/biostatistics/kxx041
[13] CLAUS HENN, B., AUSTIN, C., COULL, B. A., SCHNAAS, L., GENNINGS, C., HORTON, M. K., HERNÁNDEZ-ÁVILA, M., HU, H., TÉLLEZ-ROJO, M. M. et al. (2018). Uncovering neurodevelopmental windows of susceptibility to manganese exposure using dentine microspatial analyses. Environ. Res. 161 588-598. · doi:10.1016/j.envres.2017.12.003
[14] CRISTIANINI, N. and SHAWE-TAYLOR, J. (2000). An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge Univ. Press. · Zbl 0994.68074
[15] DAVALOS, A. D., LUBEN, T. J., HERRING, A. H. and SACKS, J. D. (2017). Current approaches used in epidemiologic studies to examine short-term multipollutant air pollution exposures. Ann. Epidemiol. 27 145-153. · doi:10.1016/j.annepidem.2016.11.016
[16] DI, Q., KOUTRAKIS, P. and SCHWARTZ, J. (2016). A hybrid prediction model for PM2.5 mass and components using a chemical transport model and land use regression. Atmos. Environ. 131 390-399. · doi:10.1016/j.atmosenv.2016.02.002
[17] Gasparrini, A. (2011). Distributed lag linear and non-linear models in R: The package dlnm. J. Stat. Softw. 43 1-20.
[18] GASPARRINI, A., ARMSTRONG, B. and KENWARD, M. G. (2010). Distributed lag non-linear models. Stat. Med. 29 2224-2234. · doi:10.1002/sim.3940
[19] GASPARRINI, A., SCHEIPL, F., ARMSTRONG, B. and KENWARD, M. G. (2017). A penalized framework for distributed lag non-linear models. Biometrics 73 938-948. · Zbl 1522.62132 · doi:10.1111/biom.12645
[20] GIBSON, E. A., NUNEZ, Y., ABUAWAD, A., ZOTA, A. R., RENZETTI, S., DEVICK, K. L., GENNINGS, C., GOLDSMITH, J., COULL, B. A. et al. (2019). An overview of methods to address distinct research questions on environmental mixtures: An application to persistent organic pollutants and leukocyte telomere length. Environ. Health 18 76. · doi:10.1186/s12940-019-0515-1
[21] HAMRA, G. B. and BUCKLEY, J. P. (2018). Environmental exposure mixtures: Questions and methods to address them. Current Epidemiology Reports 5 160-165. · doi:10.1007/s40471-018-0145-0
[22] HEATON, M. J. and PENG, R. D. (2012). Flexible distributed lag models using random functions with application to estimating mortality displacement from heat-related deaths. J. Agric. Biol. Environ. Stat. 17 313-331. · Zbl 1302.62259 · doi:10.1007/s13253-012-0097-7
[23] HERRING, A. H. (2010). Nonparametric Bayes shrinkage for assessing exposures to mixtures subject to limits of detection. Epidemiology 21 S71-S76. · doi:10.1097/EDE.0b013e3181cf0058
[24] HSU, H.-H. L., CHIU, Y.-H. M., COULL, B. A., KLOOG, I., SCHWARTZ, J., LEE, A., WRIGHT, R. O. and WRIGHT, R. J. (2015). Prenatal particulate air pollution and asthma onset in urban children. Identifying sensitive windows and sex differences. Am. J. Respir. Crit. Care Med. 192 1052-1059. · doi:10.1164/rccm.201504-0658OC
[25] KEIL, A. P., BUCKLEY, J. P., O’BRIEN, K. M., FERGUSON, K. K., ZHAO, S. and WHITE, A. J. (2020). A quantile-based g-computation approach to addressing the effects of exposure mixtures. Environ. Health Perspect. 128 047004. · doi:10.1289/EHP5838
[26] LAKSHMANAN, A., CHIU, Y.-H. M., COULL, B. A., JUST, A. C., MAXWELL, S. L., SCHWARTZ, J., GRYPARIS, A., KLOOG, I., WRIGHT, R. J. et al. (2015). Associations between prenatal traffic-related air pollution exposure and birth weight: Modification by sex and maternal pre-pregnancy body mass index. Environ. Res. 137 268-277. · doi:10.1016/j.envres.2014.10.035
[27] LEE, A., HSU, H.-H. L., CHIU, Y.-H. M., BOSE, S., ROSA, M. J., KLOOG, I., WILSON, A., SCHWARTZ, J., COHEN, S. et al. (2018). Prenatal fine particulate exposure and early childhood asthma: Effect of maternal stress and fetal sex. J. Allergy Clin. Immunol. 141 1880-1886. · doi:10.1016/j.jaci.2017.07.017
[28] LIU, D., LIN, X. and GHOSH, D. (2007). Semiparametric regression of multidimensional genetic pathway data: Least-squares kernel machines and linear mixed models. Biometrics 63 1079-1088, 1311. · Zbl 1274.62825 · doi:10.1111/j.1541-0420.2007.00799.x
[29] LIU, S. H., BOBB, J. F., LEE, K. H. et al. (2018). Lagged kernel machine regression for identifying time windows of susceptibility to exposures of complex mixtures. Biostatistics 19 325-341. · doi:10.1093/biostatistics/kxx036
[30] MOLITOR, J., PAPATHOMAS, M., JERRETT, M. and RICHARDSON, S. (2010). Bayesian profile regression with an application to the national survey of children’s health. Biostatistics 11 484-498. · Zbl 1437.62560 · doi:10.1093/biostatistics/kxq013
[31] MORK, D. and WILSON, A. (2021). Treed distributed lag nonlinear models. Biostatistics. · doi:10.1093/biostatistics/kxaa051
[32] MORRIS, J. S. (2015). Functional regression. Annu. Rev. Stat. Appl. 2 321-359.
[33] MURRAY, I., ADAMS, R. P. and MACKAY, D. J. C. (2009). Elliptical slice sampling. J. Mach. Learn. Res. Workshop Conf. Proc. 9 541-548.
[34] PARK, S. K., TAO, Y., MEEKER, J. D., HARLOW, S. D. and MUKHERJEE, B. (2014). Environmental risk score as a new tool to examine multi-pollutants in epidemiologic research: An example from the NHANES study using serum lipid levels. PLoS ONE 9 e98632. · doi:10.1371/journal.pone.0098632
[35] PEARCE, J. L., WALLER, L. A., CHANG, H. H., KLEIN, M., MULHOLLAND, J. A., SARNAT, J. A., SARNAT, S. E., STRICKLAND, M. J. and TOLBERT, P. E. (2014). Using self-organizing maps to develop ambient air quality classifications: A time series example. Environ. Health 13 56. · doi:10.1186/1476-069X-13-56
[36] PENG, R. D., DOMINICI, F. and WELTY, L. J. (2009). A Bayesian hierarchical distributed lag model for estimating the time course of risk of hospitalization associated with particulate matter air pollution. J. R. Stat. Soc. Ser. C. Appl. Stat. 58 3-24. · doi:10.1111/j.1467-9876.2008.00640.x
[37] TAYLOR, K. W., JOUBERT, B. R., BRAUN, J. M., DILWORTH, C., GENNINGS, C., HAUSER, R., HEINDEL, J. J., RIDER, C. V., WEBSTER, T. F. et al. (2016). Statistical approaches for assessing health effects of environmental chemical mixtures in epidemiology: Lessons from an innovative workshop. Environ. Health Perspect. 124 227-229. · doi:10.1289/EHP547
[38] WARREN, J., FUENTES, M., HERRING, A. and LANGLOIS, P. (2012). Spatial-temporal modeling of the association between air pollution exposure and preterm birth: Identifying critical windows of exposure. Biometrics 68 1157-1167. · Zbl 1259.62106 · doi:10.1111/j.1541-0420.2012.01774.x
[39] WARREN, J. L., FUENTES, M., HERRING, A. H. and LANGLOIS, P. H. (2013). Air pollution metric analysis while determining susceptible periods of pregnancy for low birth weight. ISRN Obstetrics and Gynecology 2013 1-9. · doi:10.1155/2013/387452
[40] WARREN, J. L., STINGONE, J. A., HERRING, A. H. et al. (2016). Bayesian multinomial probit modeling of daily windows of susceptibility for maternal \[{\text{PM}_{2.5}}\] exposure and congenital heart defects. Stat. Med. 35 2786-2801. · doi:10.1002/sim.6891
[41] Warren, J. L., Kong, W., Luben, T. J. and Chang, H. H. (2020). Critical window variable selection: Estimating the impact of air pollution on very preterm birth. Biostatistics 21 790-806. · doi:10.1093/biostatistics/kxz006
[42] WILSON, A., CHIU, Y.-H. M., HSU, H.-H. L., WRIGHT, R. O., WRIGHT, R. J. and COULL, B. A. (2017a). Potential for bias when estimating critical windows for air pollution in children’s health. Am. J. Epidemiol. 186 1281-1289. · doi:10.1093/aje/kwx184
[43] WILSON, A., CHIU, Y.-H. M., HSU, H.-H. L., WRIGHT, R. O., WRIGHT, R. J. and COULL, B. A. (2017b). Bayesian distributed lag interaction models to identify perinatal windows of vulnerability in children’s health. Biostatistics 18 537-552. · doi:10.1093/biostatistics/kxx002
[44] WILSON, A., HSU, H.-H. L., CHIU, Y.-H. M., WRIGHT, R. O., WRIGHT, R. J. and COULL, B. A. (2022a). Supplement to “Kernel machine and distributed lag models for assessing windows of susceptibility to environmental mixtures in children’s health studies.” https://doi.org/10.1214/21-AOAS1533SUPPA
[45] WILSON, A., HSU, H.-H. L., CHIU, Y.-H. M., WRIGHT, R. O., WRIGHT, R. J. and COULL, B. A. (2022b). Supplement to “Kernel machine and distributed lag models for assessing windows of susceptibility to environmental mixtures in children’s health studies.” https://doi.org/10.1214/21-AOAS1533SUPPB
[46] WOODRUFF, T. J., ZOTA, A. R. and SCHWARTZ, J. M. (2011). Environmental chemicals in pregnant women in the United States: NHANES 2003-2004. Environ. Health Perspect. 119 878-885. · doi:10.1289/ehp.1002727
[47] WRIGHT, R. O. (2017). Environment, susceptibility windows, development, and child health. Curr. Opin. Pediatr. 29 211-217. · doi:10.1097/MOP.0000000000000465
[48] WRIGHT, R. J., SUGLIA, S. F., LEVY, J., FORTUN, K., SHIELDS, A., SUBRAMANIAN, S. and WRIGHT, R. (2008). Transdisciplinary research strategies for understanding socially patterned disease: The asthma coalition on community, environment, and social stress (ACCESS) project as a case study. Ciênc. Saúde Colet. 13 1729-1742. · doi:10.1590/S1413-81232008000600008
[49] XIA, Y. (2008). A multiple-index model and dimension reduction. J. Amer. Statist. Assoc. 103 1631-1640. · Zbl 1286.62021 · doi:10.1198/016214508000000805
[50] ZANOBETTI, A., WAND, M. P., SCHWARTZ, J. and RYAN, L. M. (2000). Generalized additive distributed lag models: Quantifying mortality displacement. Biostatistics 1 279-92. · Zbl 0961.62106 · doi:10.1093/biostatistics/1.3.279
[51] ZANOBETTI, A., AUSTIN, E., COULL, B. A., SCHWARTZ, J. and KOUTRAKIS, P. (2014). Health effects of multi-pollutant profiles. Environ. Int. 71 13-19 · doi:10.1016/j.envint.2014.05.023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.