×

A Bertrand duopoly game with long-memory effects. (English) Zbl 1445.91029

Summary: Reconsidering the Bertrand duopoly game based on the concept of long short-term memory, we construct a fractional-order Bertrand duopoly game by extending the integer-order game to its corresponding fractional-order form. We build such a Bertrand duopoly game, in which both players can make their decisions with long-memory effects. Then, we investigate its Nash equilibria, local stability, and numerical solutions. Using the bifurcation diagram, the phase portrait, time series, and the 0-1 test for chaos, we numerically validate these results and illustrate its complex phenomena, such as bifurcation and chaos.

MSC:

91B54 Special types of economic markets (including Cournot, Bertrand)
91B55 Economic dynamics
91A25 Dynamic games

References:

[1] Ueda, M., Effect of information asymmetry in Cournot duopoly game with bounded rationality, Applied Mathematics and Computation, 362, 8 (2019) · Zbl 1433.91047 · doi:10.1016/j.amc.2019.06.049
[2] Tu, H.; Wang, X., Research on a dynamic master-slave Cournot triopoly game model with bounded rational rule and its control, Mathematical Problems in Engineering, 2016 (2016) · Zbl 1400.91095 · doi:10.1155/2016/2353909
[3] Hsu, J.; Liu, L.; Henry Wang, X.; Zeng, C., Ad valorem versus per-unit royalty licensing in a Cournot duopoly model, The Manchester School, 87, 6, 890-901 (2019) · doi:10.1111/manc.12280
[4] Al-khedhairi, A., Differentiated Cournot duopoly game with fractional-order and its discretization, Engineering Computations, 36, 3, 781-806 (2019) · doi:10.1108/ec-07-2018-0333
[5] Xin, B.; Wang, Y., Stability and Hopf bifurcation of a stochastic Cournot duopoly game in a blockchain cloud services market driven by brownian motion, IEEE Access, 8, 41432-41438 (2020) · doi:10.1109/access.2020.2976501
[6] Zhou, J.; Zhou, W.; Chu, T.; Chang, Y.-X.; Huang, M.-J., Bifurcation, intermittent chaos and multi-stability in a two-stage Cournot game with R&D spillover and product differentiation, Applied Mathematics and Computation, 341, 358-378 (2019) · Zbl 1429.91203 · doi:10.1016/j.amc.2018.09.004
[7] Zhang, Y.-h.; Zhou, W.; Chu, T.; Chu, Y.-D.; Yu, J.-N., Complex dynamics analysis for a two-stage Cournot duopoly game of semi-collusion in production, Nonlinear Dynamics, 91, 2, 819-835 (2018) · Zbl 1390.91238 · doi:10.1007/s11071-017-3912-4
[8] Gori, L.; Sodini, M., Price competition in a nonlinear differentiated duopoly, Chaos, Solitons & Fractals, 104, 557-567 (2017) · Zbl 1380.91099 · doi:10.1016/j.chaos.2017.09.009
[9] Askar, S. S.; Al-khedhairi, A., Dynamic investigations in a duopoly game with price competition based on relative profit and profit maximization, Journal of Computational and Applied Mathematics, 367 (2020) · Zbl 1427.91157 · doi:10.1016/j.cam.2019.112464
[10] Xin, B.; Peng, W.; Guerrini, L., A continuous time Bertrand duopoly game with fractional delay and conformable derivative: modelling, discretization process, Hopf bifurcation and chaos, Frontiers in Physics, 7, 84 (2019) · doi:10.3389/fphy.2019.00084
[11] Ma, J.; Lou, W., Complex characteristics of multichannel household appliance supply chain with the price competition, Complexity, 2017 (2017) · Zbl 1367.93055 · doi:10.1155/2017/4327069
[12] Fanti, L.; Gori, L.; Mammana, C.; Michetti, E., The dynamics of a Bertrand duopoly with differentiated products: synchronization, intermittency and global dynamics, Chaos, Solitons & Fractals, 52, 73-86 (2013) · Zbl 1323.37052 · doi:10.1016/j.chaos.2013.04.002
[13] Tu, H.; Zhan, X.; Mao, X., Complex dynamics and chaos control on a kind of Bertrand duopoly game model considering R&D activities, Discrete Dynamics in Nature and Society, 2017 (2017) · Zbl 1412.91080 · doi:10.1155/2017/7384150
[14] Ahmed, E.; Elsadany, A. A.; Puu, T., On Bertrand duopoly game with differentiated goods, Applied Mathematics and Computation, 251, 169-179 (2015) · Zbl 1328.91202 · doi:10.1016/j.amc.2014.11.051
[15] Yang, X.; Peng, Y.; Xiao, Y.; Wu, X., Nonlinear dynamics of a duopoly Stackelberg game with marginal costs, Chaos, Solitons & Fractals, 123, 185-191 (2019) · Zbl 1448.91071 · doi:10.1016/j.chaos.2019.04.007
[16] Peng, Y.; Lu, Q., Complex dynamics analysis for a duopoly Stackelberg game model with bounded rationality, Applied Mathematics and Computation, 271, 259-268 (2015) · Zbl 1410.91137 · doi:10.1016/j.amc.2015.08.138
[17] Shi, L.; Le, Y.; Sheng, Z., Analysis of price Stackelberg duopoly game with bounded rationality, Discrete Dynamics in Nature and Society, 2014 (2014) · Zbl 1422.91478 · doi:10.1155/2014/428568
[18] Dong, Y.; Zhang, Y.; Pan, J.; Chen, T., Evolutionary game model of stock price synchronicity from investor behavior, Discrete Dynamics in Nature and Society, 2020 (2020) · Zbl 1459.91227 · doi:10.1155/2020/7957282
[19] Ma, J.; Sun, L.; Hou, S.; Zhan, X., Complexity study on the Cournot-Bertrand mixed duopoly game model with market share preference, Chaos: An Interdisciplinary Journal of Nonlinear Science, 28, 2 (2018) · Zbl 1391.91121 · doi:10.1063/1.5001353
[20] Wu, C.-H., Licensing to a competitor and strategic royalty choice in a dynamic duopoly, European Journal of Operational Research, 279, 3, 840-853 (2019) · Zbl 1431.91224 · doi:10.1016/j.ejor.2019.06.035
[21] Xin, B.; Peng, W.; Kwon, Y., A Fractional-Order Difference Cournot Duopoly Game with Long Memory (2019), Ithaca, NY, USA: Cornell University Press, Ithaca, NY, USA
[22] Bischi, G. I.; Naimzada, A., Global analysis of a dynamic duopoly game with bounded rationality, Advances in Dynamic Games and Applications, 361-385 (2000), Birkhuser Boston: Springer, Birkhuser Boston · Zbl 0957.91027 · doi:10.1007/978-1-4612-1336-9_20
[23] Cermak, J.; Gyori, I.; Nechvatal, L., On explicit stability conditions for a linear fractional difference system, Fractional Calculus and Applied Analysis, 18, 3, 651-672 (2015) · Zbl 1320.39004 · doi:10.1515/fca-2015-0040
[24] Chen, F.; Luo, X.; Zhou, Y., Existence results for nonlinear fractional difference equation, Advances in Difference Equations, 2011, 1, 1-12 (2011) · Zbl 1207.39012 · doi:10.1155/2011/713201
[25] Wu, G.-C.; Baleanu, D., Discrete fractional logistic map and its chaos, Nonlinear Dynamics, 75, 1-2, 283-287 (2014) · Zbl 1281.34121 · doi:10.1007/s11071-013-1065-7
[26] Gottwald, G. A.; Melbourne, I., On the validity of the 0-1 test for chaos, Nonlinearity, 22, 6, 1367-1382 (2009) · Zbl 1171.65091 · doi:10.1088/0951-7715/22/6/006
[27] Falconer, I.; Gottwald, G. A.; Melbourne, I.; Wormnes, K., Application of the 0-1 test for chaos to experimental data, SIAM Journal on Applied Dynamical Systems, 6, 2, 395-402 (2007) · Zbl 1210.37059 · doi:10.1137/060672571
[28] Yuan, L.; Zheng, S.; Alam, Z., Dynamics analysis and cryptographic application of fractional logistic map, Nonlinear Dynamics, 96, 1, 615-636 (2019) · Zbl 1437.94079 · doi:10.1007/s11071-019-04810-3
[29] Chen, T.; Xiao, B.; Liu, H., Credit risk contagion in an evolving network model integrating spillover effects and behavioral interventions, Complexity, 2018 (2018) · Zbl 1398.91637 · doi:10.1155/2018/1843792
[30] Chen, T.; Wang, J.; Liu, H.; He, Y., Contagion model on counterparty credit risk in the crt market by considering the heterogeneity of counterparties and preferential-random mixing attachment, Physica A: Statistical Mechanics and Its Applications, 520, 458-480 (2019) · doi:10.1016/j.physa.2019.01.018
[31] Chen, T.; Wang, Y.; Zeng, Q.; Luo, J., Network model of credit risk contagion in the interbank market by considering bank runs and the fire sale of external assets, Physica A: Statistical Mechanics and Its Applications, 542 (2020) · Zbl 1539.91137 · doi:10.1016/j.physa.2019.123006
[32] Xin, B.; Sun, M., A differential oligopoly game for optimal production planning and water savings, European Journal of Operational Research, 269, 1, 206-217 (2018) · Zbl 1431.91225 · doi:10.1016/j.ejor.2017.07.016
[33] Xin, B.; Peng, W.; Kwon, Y.; Liu, Y., Modeling, discretization, and hyperchaos detection of conformable derivative approach to a financial system with market confidence and ethics risk, Advances in Difference Equations, 2019, 1, 138 (2019) · Zbl 1459.37095 · doi:10.1186/s13662-019-2074-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.