×

Reaction-diffusion processes. (English) Zbl 0990.60093

This is a survey paper in the study of reaction-diffusion processes. Schögl’s model and Brussel’s model are presented in the first section, they are typical models in non-equilibrium statistical physics. The case of a finite number of sites is not so easy, but is now quite well understood. The construction of the process which is associated with an infinite number of sites is very hard. A useful tool in this way is the Markovian coupling. Existence of stationary distributions, ergodicity and phase transitions are discussed. When the formal generator of the process is suitably rescaled, we are lead to the reaction-diffusion equation which describes the macroscopic behavior of the physical system.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82C22 Interacting particle systems in time-dependent statistical mechanics
Full Text: DOI

References:

[1] Chen, M. F., Jump Processes and Particle Systems (1986), Beijing: Normal University Press, Beijing
[2] Chen, M. F., From Markov Chains to Non-Equilibrium Particle Systems (1992), Singapore: World Scientific, Singapore · Zbl 0753.60055
[3] Yan, S. J.; Li, Z. B., Probability models of non-equilibrium systems and the Master equations (in Chinese), Acta Phys. Sin., 29, 139-139 (1980)
[4] Yan, S. J.; Chen, M. F., Multidimensional Q-processes, Chin. Ann. Math., B.7, 1, 90-90 (1986) · Zbl 0596.60074
[5] Chen, M. F., Coupling of jump processes, Acta Math. Sin. New Ser., 2, 123-123 (1986) · Zbl 0615.60078 · doi:10.1007/BF02564874
[6] Chen, M. F., On three classical problems for Markov chains with continuous time parameters, J. Appl. Prob., 28, 305-305 (1991) · Zbl 0761.60064 · doi:10.2307/3214868
[7] Boldrighini, C.; DeMasi, A.; Pellegrinotti, A., Collective phenomena in interacting particle systems, Stoch. Proc. Appl., 25, 137-137 (1987) · Zbl 0626.60103 · doi:10.1016/0304-4149(87)90194-3
[8] Chen, M. F., Infinite-dimensional reaction-diffusion processes, Acta Math. Sin. New Ser., l, 3, 261-261 (1985) · Zbl 0613.60070
[9] Chen, M. F., Existence theorems for interacting particle systems with non-compact state spaces, Sci. Sin., 30, 2-2 (1987) · Zbl 0667.60099
[10] Chen, M. F., Stationary distributions of infinite particle systems with non-compact state spaces, Acta Math. Sci., 9, 1-1 (1989)
[11] Chen, M. F., Ergodic theorems for reaction-diffusion processes, J. Statis. Phys., 58, 5-6, 939-939 (1990) · Zbl 0714.60070 · doi:10.1007/BF01026558
[12] Chen, M. F., Uniqueness of reaction-diffusion processes, Chin. Sci. Bulleten, 36, 12, 969-969 (1991) · Zbl 0798.60089
[13] Chen, M. F., On ergodic region of Schlögl’s model, inProc. Intern. Conf. on Dirichlet Fonns & Stoch. Proc. (Eds. Ma, Z. M., Röckner, M., Yan, J. A.), Walter de Gruyter, 1994.
[14] Chen, M. F.; Ding, W. D.; Zhu, D. J., Ergodicity of reversible reaction-diffusion processes with general reaction rates, Acta Math. Sin. New Ser., 10, 1, 99-99 (1994) · Zbl 0824.60081 · doi:10.1007/BF02561553
[15] Chen, M. F.; Huang, L. P.; Xu, X. J.; Chern, S. S.; Yang, C. N., Hydrodynamic limit for reaction-diffusion processes with several species, Probability and Statistics, Nankai Series of Pure and Applied Mathematics (1991), Singapore: World Scientific, Singapore
[16] DeMasi, A.; Presutti, E., Lectures on the Collective Behavior of Particle Systems, LNM 1502 (1992), Beijing: Science in China Press, Beijing
[17] Ding, W. D.; Durrett, R.; Liggett, T. M., Ergodicity of reversible theorems reaction-diffusion processes, Prob. Th. Rel. Fields, 85, 1, 13-13 (1990) · Zbl 0669.60077 · doi:10.1007/BF01377624
[18] Ding, W. D.; Zheng, X. G., Ergodic theorems for linear growth processes with diffusion, Chin. Ann. Math. B, 10, 3, 386-386 (1989) · Zbl 0682.60093
[19] Han, D., Existence of solution to the martingale problem for multispieces infinite dimensional reaction-diffusion particle systems, Chin. J. Appl. Prob. Statis., 6, 3, 265-265 (1990)
[20] Han, D., Uniquenew of solution to the martingale problem for infinite-dimensional reaction-diffusion particle systems with multispeices (in Chinese), Chin. Ann. Math., 13A, 2, 271-271 (1992) · Zbl 0782.60045
[21] Han, D., Uniquenes for reaction-diffusion particle systems with multispecies (in Chinese), Chin. Ann. Math., 16A, 5-5 (1995)
[22] Han, D., Ergodicity for onedimensional Brussel’s model (in Chinese), J. Xingjiang Univ., 8, 3, 37-37 (1991) · Zbl 0964.80502
[23] Huang, L. P., The existence theorem of the stationary distributions of infinite particle systems (in Chinese), Chin. J. Appl. Prob. Statis., 3, 2, 152-152 (1987) · Zbl 0637.60110
[24] Li, Y., Uniqueness for infinite-dimensional reaction-diffusion processes, Chin. Sci. Bulleten, 42, 1681-1681 (1991)
[25] Li, Y., Ergodicity of a class of reaction-diffusion processes with translation invariant coefficients (in Chinese), Chin. Ann. Math., 16A, 2, 223-223 (1995) · Zbl 0846.60076
[26] Lü, J. S., The optimal coupling for single-birth reaction-diffusion processes and its applications (in Chinese), J. Beijing Normal Univ., 33, 1, 10-10 (1997) · Zbl 0891.60084
[27] Mountford, T. S., The ergodicity of a class of reversible reaction-diffusion processes, Prob. Th. Re1. Fields, 92, 2, 259-259 (1992) · Zbl 0767.60077 · doi:10.1007/BF01194924
[28] Neuhauser, C., An ergcdic theorem for Schlögl mcdels with small migration, Prob. Th. Rel. Fields, 85, 1, 27-27 (1990) · Zbl 0685.60083 · doi:10.1007/BF01377625
[29] Shiga, T., Stepping stone models in population, genetics and population dynamics inStochustic Processes in Physics and Engineering (eds. Albeverio S.) 1988, 345. · Zbl 0656.92006
[30] Zheng, X. G.; Ding, W. D., Existence theorems for linear growth processes with diffusion, Acta Math. Sin. New Ser., 7, 1, 25-25 (1987) · Zbl 0644.60087
[31] Tang, S. Z., The existence and uniqueness of reaction-diffusion processes with multi-species and bounded diffusion rates (in Chinese), J. Chin. Appl. Prob. Stat., 1, 11-11 (1985) · Zbl 0578.60099
[32] Dawson, D. A.; Zheng, X., Law of large numbers and central limit theorem for unbounded jump mean field models, Adv. Appl. Math., 12, 293-293 (1991) · Zbl 0751.60080 · doi:10.1016/0196-8858(91)90015-B
[33] Feng, S., Large deviations for empirical process of interacting particle system with unbounded jumps, Ann. Prob., 22, 4, 2122-2122 (1994) · Zbl 0852.60029 · doi:10.1214/aop/1176988496
[34] Feng, S., Large deviations for Markov processes with interaction and unbounded jumps, Prob. Th. Rel. Fields, 100, 227-227 (1994) · Zbl 0814.60024 · doi:10.1007/BF01199267
[35] Feng, S., Nonlinear master equation of multitype particle systems, Stoch. Proc. Appl., 57, 247-247 (1995) · Zbl 0821.60098 · doi:10.1016/0304-4149(94)00055-X
[36] Feng, S.; Zheng, X., Solutions of a class of nonlinear master equations, Stoch. Proc. Appl., 43, 65-65 (1992) · Zbl 0762.60075 · doi:10.1016/0304-4149(92)90076-3
[37] Chen, R. R., An extended class of time-continuous branching processes, J. Appl. Prob., 34, 1-1 (1997) · Zbl 0952.60085 · doi:10.2307/3215169
[38] Song, J. S., Time-continuous MDP with unbounded rate, Sci. Sin., 30, 1258-1258 (1987) · Zbl 0623.76050
[39] Anderson, W. J., Continuous-Time Markov Chains, Springer Serics in Statistics (1991), Beijing: Spring-Verlag, Beijing · Zbl 0731.60067
[40] Hamza, K.; Klebaner, F. C., Conditions for integrability of Markov chains, J. Appl. Prob., 32, 541-541 (1995) · Zbl 0835.60066 · doi:10.2307/3215307
[41] Kersting, G.; Klebaner, F. C., Sharp conditions for nonexplosions in Markov jump processes, Ann. Prob., 23, 1, 268-268 (1995) · Zbl 0834.60084 · doi:10.1214/aop/1176988386
[42] Meyn, S. P.; Tweedie, R. L., Stability of Markovian processes III: Faster-Lyapunov criteria for continuous-time processes, Adv. Appl. Prob., 25, 518-518 (1993) · Zbl 0781.60053 · doi:10.2307/1427522
[43] Konstantinov, A. A.; Maslov, V. P.; Chebotarev, A. M., Probability representations of solutions of the Cauchy problem for quantum mechanical solutions, Russian Math. Surveys, 45, 1-1 (1990) · Zbl 0724.60102 · doi:10.1070/RM1990v045n06ABEH002703
[44] Holley, R., A class of interaction in an infinite particle systems, Adv. Math., 5, 291-291 (1970) · Zbl 0219.60054 · doi:10.1016/0001-8708(70)90035-6
[45] Liggett, T. M., An infinite particle system with zero range interactions, Ann. of Prob., 1, 240-240 (1973) · Zbl 0264.60083 · doi:10.1214/aop/1176996977
[46] Andjel, E. D., Invariant measures for zero range process, Ann. of Prob., 10, 3, 527-527 (1982)
[47] Liggett, T. M.; Spitzer, F., Ergodic theorems for coupled random walks and other systems with locally interacting components, Z. Wahrs., 56, 443-443 (1981) · Zbl 0444.60096 · doi:10.1007/BF00531427
[48] Liggett, T. M., Interacting Particle Systems (1985), Beijing: Science in China Press, Beijing · Zbl 0559.60078
[49] Chen, M. F., Basic couplings of Markov chains (in Chinese), J. Beijing Normal Univ., 4, 3, 10-10 (1984)
[50] Chen, M. F., Optimal Markovian couplings and applications, Acta Math. Sin. New Ser., 10, 3, 260-260 (1994) · Zbl 0813.60068 · doi:10.1007/BF02560717
[51] Zhang, Y. H., Conservativity of couplings for jump processes (in Chinese), J. Beijing Normal Univ., 30, 3, 305-305 (1994) · Zbl 0816.60081
[52] Chen, M. F.; Li, S. F., Coupling methods for multi-dimensional diffusion processes, Ann. of Probab., 17, 1, 151-151 (1989) · Zbl 0686.60083 · doi:10.1214/aop/1176991501
[53] Chen, M. F.; Wang, F. Y., Application of coupling method to the first eigenvalue on manifold, Sci. in China., Ser. A, 37, 1-1 (1994) · Zbl 0799.53044
[54] Chen, M. F.; Wang, F. Y., Estimation of the first eigenvalue of second order elliptic operators, J. Funct. Anal., 131, 2, 345-345 (1995) · Zbl 0837.35102 · doi:10.1006/jfan.1995.1092
[55] Chen, M. F.; Wang, F. Y., Estimation of spectral gap for elliptic operators, Trans. Amer. Math. Soc., 394, 3, 1239-1239 (1997) · Zbl 0872.35072 · doi:10.1090/S0002-9947-97-01812-6
[56] Chen, M. F.; Wang, F. Y., General formula for lower bound of the first eigenvalue on Riemannian manifolds, Sci, in China. Ser. A, 27, 1, 34-34 (1997)
[57] Wang, F. Y., Ergodicity for infinite-dimensional diffusion processes on manifolds, Sci. in China, Ser A, 37, 2, 137-137 (1994) · Zbl 0804.58059
[58] Wang, F. Y., Uniqueness of Gibbs states and the L_2-convergence of infinite-dimensional reflecting diffusion processes, Sci. in China, Ser. A, 38, 9, 908-908 (1995) · Zbl 0830.60097
[59] Wang, F. Y., Estimation of the first eigenvalue and the lattice Yang-Mills fields, Chin. J. Math., 17A, 2-2 (1996)
[60] Chen, M. F., Optimal Markovian couplings and application to Riemannian geometry, inProb. Theory and Math. Stat. (Ed. Grigelionis, B.), 1994, 121. VPS/TEV.
[61] Chen, M. F., Trilogy of couplings and general formulas for lower bound of spectral gap, inProceedings of the Symposium on Probability Towards the Year 2000 (eds. Accardi, L., Heyde, C.), 1996, 337.
[62] Chen, M. F., Coupling, spectral gap and related topics (I), (II), (III), Chin. Sci. Bull., 42, 16, 1321-1321 (1997) · Zbl 0892.58078 · doi:10.1007/BF02882858
[63] Djehichem, B.; Kaj, I., The rate function for some measure-valued jump processes, Ann. Prob., 23, 3, 1414-1414 (1995) · Zbl 0852.60093 · doi:10.1214/aop/1176988190
[64] Durrett, R.; Levin, S., The importance of being discrete (and spatial), Theoret. Pop. Biol., 46, 363-363 (1994) · Zbl 0846.92027 · doi:10.1006/tpbi.1994.1032
[65] Durrett, R., Ten lectures on particle systems,St. Flour Lecture Notes, LNM 1608, 1995. · Zbl 0840.60088
[66] Durrett, R.; Neuhauser, C., Particle systems and reaction-diffusion equations, Ann. Prob., 22, 1, 289-289 (1994) · Zbl 0799.60093 · doi:10.1214/aop/1176988861
[67] Feng, J. F., The hydrodynamic limit for the reaction diffusion equation—an approach in terms of the GPV method, J. THeore. Prob., 9, 2, 285-285 (1996) · Zbl 0870.60097 · doi:10.1007/BF02214650
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.