×

On distributed fusion estimation with stochastic scheduling over sensor networks. (English) Zbl 1496.93118

Summary: The paper deals with the distributed fusion estimation for linear time-varying systems over sensor networks, in which stochastic sensor scheduling and unknown exogenous inputs are taken into account. In the stochastic sensor scheduling, expensive and cheap channels are used to respectively transmit the high-precision data and the low-precision quantized data. Based on the stochastic scheduling scheme, a recursive minimum mean square error (MMSE) estimator is proposed against the unknown inputs. Then, a distributed fusion estimator is presented by combining local estimates and covariances from all sensors, relying on the covariance intersection (CI) fusion rule. Sufficient conditions are established to ensure that the proposed fusion estimator is stable with the stochastically ultimately bounded estimation error. Finally, a target tracking example is given to show the effectiveness of the proposed method.

MSC:

93E10 Estimation and detection in stochastic control theory
93C05 Linear systems in control theory
68M18 Wireless sensor networks as related to computer science
90B36 Stochastic scheduling theory in operations research
Full Text: DOI

References:

[1] Battistelli, G., Distributed moving-horizon estimation with arrival-cost consensus, IEEE Transactions on Automatic Control, 64, 8, 3316-3323 (2019) · Zbl 1482.93128
[2] Battistelli, G.; Chisci, L., Kullback-Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability, Automatica, 50, 3, 707-718 (2014) · Zbl 1298.93311
[3] Chen, B.; Hu, G.; Ho, D. W.C.; Yu, L., A new approach to linear/nonlinear distributed fusion estimation problem, IEEE Transactions on Automatic Control, 64, 3, 1301-1308 (2019) · Zbl 1482.93129
[4] Cheng, Y.; Li, H.; Wan, P., A theoretical framework for optimal cooperative networking in multiradio multichannel wireless networks, IEEE Wireless Communications, 19, 2, 66-73 (2012)
[5] Cheng, Y.; Ye, H.; Wang, Y.; Zhou, D., Unbiased minimum-variance state estimation for linear systems with unknown input, Automatica, 45, 2, 485-491 (2009) · Zbl 1158.93415
[6] Ding, J.; Sun, S.; Ma, J.; Li, N., Fusion estimation for multi-sensor networked systems with packet loss compensation, Information Fusion, 45, 138-149 (2019)
[7] Farina, M.; Ferrari-Trecate, G.; Scattolini, R., Distributed moving horizon estimation for linear constrained systems, IEEE Transactions on Automatic Control, 55, 11, 2462-2475 (2010) · Zbl 1368.93677
[8] Fu, M.; de Souza, C. E., State estimation for linear discrete-time systems using quantized measurements, Automatica, 45, 12, 2937-2945 (2009) · Zbl 1192.93115
[9] Gungor, V.; Hancke, G., Industrial wireless sensor networks: Challenges, design principles, and technical approaches, IEEE Transactions on Industrial Electronics, 56, 10, 4258-4265 (2009)
[10] Han, D.; Mo, Y.; Wu, J.; Shi, L., An opportunistic sensor scheduling solution to remote state estimation over multiple channels, IEEE Transactions on Signal Processing, 64, 18, 4905-4917 (2016) · Zbl 1414.90150
[11] He, L.; Chen, J.; Qi, Y., Event-based state estimation: Optimal algorithm with generalized closed skew normal distribution, IEEE Transactions on Automatic Control, 64, 1, 321-328 (2019) · Zbl 1423.93376
[12] He, X.; Xue, W.; Zhang, X.; Fang, H., Distributed filtering for uncertain systems under switching sensor networks and quantized communications, Automatica, 114 (2020) · Zbl 1441.93311
[13] Hou, M.; Patton, R. J., Optimal filtering for systems with unknown inputs, IEEE Transactions on Automatic Control, 43, 3, 445-449 (1998) · Zbl 0904.93037
[14] Hounkpevi, F. O.; Yaz, E. E., Robust minimum variance linear state estimators for multiple sensors with different failure rates, Automatica, 43, 7, 1274-1280 (2007) · Zbl 1123.93085
[15] Hsieh, C., Extension of unbiased minimum-variance input and state estimation for systems with unknown inputs, Automatica, 45, 9, 2149-2153 (2009) · Zbl 1175.93213
[16] Julier, S.; Uhlmann, J., A non-divergent estimation algorithm in the presence of unknown correlations, In Proceedings of the 1997 American Control Conference, 4, 2369-2373 (1997)
[17] Kitanidis, P. K., Unbiased minimum-variance linear state estimation, Automatica, 23, 6, 775-778 (1987) · Zbl 0627.93065
[18] Kluge, S.; Reif, K.; Brokate, M., Stochastic stability of the extended Kalman filter with intermittent observations, IEEE Transactions on Automatic Control, 55, 2, 514-518 (2010) · Zbl 1368.93717
[19] Li, B., State estimation with partially observed inputs: A unified Kalman filtering approach, Automatica, 49, 3, 816-820 (2013) · Zbl 1269.93113
[20] Li, X.; Zhu, Y.; Wang, J.; Han, C., Optimal linear estimation fusion, Part I: unified fusion rules, IEEE Transactions on Information Theory, 49, 9, 2192-2208 (2003) · Zbl 1302.93203
[21] Lin, H.; Sun, S., Globally optimal sequential and distributed fusion state estimation for multi-sensor systems with cross-correlated noises, Automatica, 101, 128-137 (2019) · Zbl 1415.93250
[22] Lu, P.; van Kampen, E.; de Visser, C.; Chu, Q., Framework for state and unknown input estimation of linear time-varying systems, Automatica, 73, 145-154 (2016) · Zbl 1372.93200
[23] Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., & Anderson, J. (2002). Wireless sensor networks for habitat monitoring. In Proceedings of 1st ACM international workshop on wireless sensor networks and applications (pp. 88-97).
[24] Mohammadi, A.; Asif, A., Distributed particle filter implementation with intermittent/irregular consensus convergence, IEEE Transactions on Signal Processing, 61, 10, 2572-2587 (2013) · Zbl 1393.94366
[25] Potdar, V., Sharif, A., & Chang, E. (2009). Wireless sensor networks: A survey. In Proceedings international conference on advanced information networking and applications workshops (pp. 636-641). Bradford.
[26] Shi, D.; Chen, T.; Darouach, M., Event-based state estimation of linear dynamic systems with unknown exogenous inputs, Automatica, 69, 275-288 (2016) · Zbl 1338.93238
[27] Sun, S.; Deng, Z., Multi-sensor optimal information fusion Kalman filter, Automatica, 40, 6, 1017-1023 (2004) · Zbl 1075.93037
[28] Talebi, S. P.; Werner, S., Distributed Kalman filtering and control through embedded average consensus information fusion, IEEE Transactions on Automatic Control, 64, 10, 4396-4403 (2019) · Zbl 1482.93637
[29] Ugrinovskii, V., Distributed robust filtering with \(H_\infty\) consensus of estimates, Automatica, 47, 1, 1-13 (2011) · Zbl 1209.93152
[30] Zhang, Q., Adaptive Kalman filter for actuator fault diagnosis, Automatica, 93, 333-342 (2018) · Zbl 1400.93308
[31] Zhang, W.; Chen, B.; Chen, M. Z.Q., Hierarchical fusion estimation for clustered asynchronous sensor networks, IEEE Transactions on Automatic Control, 61, 10, 3064-3069 (2016) · Zbl 1359.93475
[32] Zhang, L.; Zhu, Y.; Zheng, W. X., State estimation of discrete-time switched neural networks with multiple communication channels, IEEE Transactions on Cybernetics, 47, 4, 1028-1040 (2017)
[33] Zhu, Y.; You, Z.; Zhao, J.; Zhang, K.; Li, X., The optimality for the distributed Kalman filtering fusion with feedback, Automatica, 37, 9, 1489-1493 (2001) · Zbl 0989.93088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.