×

Bilinear form, bilinear Bäcklund transformations, breather and periodic-wave solutions for a \((2+1)\)-dimensional shallow water equation with the time-dependent coefficients. (English) Zbl 1529.35516

Summary: Shallow water waves are seen in geophysical fluid dynamics, oceanography, coastal engineering and atmospheric science. In this paper, to describe the shallow water waves, we investigate a \((2+1)\)-dimensional shallow water equation with the time-dependent coefficients via symbolic computation. Based on the Hirota method and Painlevé integrable conditions in the existing literature, the bilinear form for that equation is hereby constructed. Via the bilinear form and exchange formulae, we build three bilinear Bäcklund transformations with certain soliton-like solutions. Via the extended homoclinic test approach, we derive the breather solutions and their asymptotic behaviors. We graphically show the breather waves. Periodic-wave solutions are worked out via the Hirota-Riemann method, and graphically displayed. Relation between the periodic-wave solutions and one-soliton solutions is discussed.

MSC:

35Q86 PDEs in connection with geophysics
35Q35 PDEs in connection with fluid mechanics
86A05 Hydrology, hydrography, oceanography
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76U60 Geophysical flows
35C08 Soliton solutions
35B10 Periodic solutions to PDEs
35B40 Asymptotic behavior of solutions to PDEs
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems
68W30 Symbolic computation and algebraic computation
Full Text: DOI

References:

[1] Thomas, J.; Ding, L., Upscale transfer of waves in one-dimensional rotating shallow water, J. Fluid Mech., 961, A2 (2023) · Zbl 1528.76012 · doi:10.1017/jfm.2023.114
[2] Gao, XY; Guo, YJ; Shan, WR, Shallow-water investigations: Bilinear auto-Bäcklund transformations for a (3+1)-dimensional generalized nonlinear evolution system, Appl. Comput. Math., 22, 133-142 (2023) · Zbl 1533.37146
[3] Gao, XY; Guo, YJ; Shan, WR, On a Whitham-Broer-Kaup-like system arising in the oceanic shallow water, Chin. J. Phys., 82, 194-200 (2023) · Zbl 07855248 · doi:10.1016/j.cjph.2022.11.005
[4] Kumar, S.; Kumar, D., Analytical soliton solutions to the generalized (3+1)-dimensional shallow water wave equation, Mod. Phys. Lett. B, 36, 2150540 (2022) · doi:10.1142/S0217984921505400
[5] Badiey, M.; Castro-Correa, JA; Escobar-Amado, CD; Wan, L.; Hodgkiss, W., Effect of oceanography on broadband acoustic wave propagation in a range dependent shallow water environment, J. Acoust. Soc. Am., 153, A57-A57 (2023) · doi:10.1121/10.0018151
[6] Varsoliwala, AC; Singh, TR, Mathematical modeling of atmospheric internal waves phenomenon and its solution by Elzaki Adomian decomposition method, J. Ocean Eng. Sci., 7, 203-212 (2022) · doi:10.1016/j.joes.2021.07.010
[7] Ma, HC; Ni, K.; Deng, A., Lump solutions to the \((2{+} 1)\)-dimensional shallow water wave equation, Therm. Sci., 21, 1765-1769 (2017) · doi:10.2298/TSCI160816066M
[8] Liu, FY; Gao, YT; Yu, X.; Ding, CC, Wronskian, Gramian, Pfaffian and periodic-wave solutions for a \((3{+}1)\)-dimensional generalized nonlinear evolution equation arising in the shallow water waves, Nonlinear Dyn., 108, 1599-1616 (2022) · doi:10.1007/s11071-022-07249-1
[9] Gao, XT; Tian, B.; Shen, Y.; Feng, CH, Considering the shallow water of a wide channel or an open sea through a generalized \((2{+}1)\)-dimensional dispersive long-wave system, Qual. Theory Dyn. Syst., 21, 104 (2022) · Zbl 1508.76018 · doi:10.1007/s12346-022-00617-7
[10] Gao, XT; Tian, B., Water-wave studies on a (2+1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system, Appl. Math. Lett., 128, 107858 (2022) · Zbl 1491.76013 · doi:10.1016/j.aml.2021.107858
[11] Zafar, A.; Shakeel, M.; Ali, A.; Rezazadeh, H.; Bekir, A., Analytical study of complex Ginzburg-Landau equation arising in nonlinear optics, J. Nonlinear Opt. Phys., 32, 2350010 (2023) · doi:10.1142/S0218863523500108
[12] Fahim, MRA; Kundu, PR; Islam, ME; Akbar, MA; Osman, MS, Wave profile analysis of a couple of \((3{+} 1)\)-dimensional nonlinear evolution equations by sine-Gordon expansion approach, IEEE J. Ocean. Eng., 7, 272-279 (2022) · doi:10.1016/j.joes.2021.08.009
[13] Ma, HC; Ruan, GD; Ni, K.; Deng, AP, Rational solutions to an Caudrey-Dodd-Gibbon-Sawada-Kotera-like equation, Therm. Sci., 20, 871-874 (2016) · doi:10.2298/TSCI1603871M
[14] Wu, XH; Gao, YT; Yu, X.; Ding, CC; Hu, L.; Li, LQ, Binary Darboux transformation, solitons, periodic waves and modulation instability for a nonlocal Lakshmanan-Porsezian-Daniel equation, Wave Motion, 114 (2022) · Zbl 1524.35564 · doi:10.1016/j.wavemoti.2022.103036
[15] Wu, XH; Gao, YT; Yu, X.; Ding, CC, \(N\)-fold generalized Darboux transformation and soliton interactions for a three-wave resonant interaction system in a weakly nonlinear dispersive medium, Chaos Solitons Fract., 165, 112786 (2022) · Zbl 1508.35114 · doi:10.1016/j.chaos.2022.112786
[16] Shen, Y.; Tian, B.; Zhou, TY; Gao, XT, \(N\)-fold Darboux transformation and solitonic interactions for the Kraenkel-Manna-Merle system in a saturated ferromagnetic material, Nonlinear Dyn., 111, 2641-2649 (2023) · doi:10.1007/s11071-022-07959-6
[17] Zhou, TY; Tian, B.; Zhang, CR; Liu, SH, Auto-Bäcklund transformations, bilinear forms, multiple-soliton, quasi-soliton and hybrid solutions of a (3+1)-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in an electron-positron plasma, Eur. Phys. J. Plus, 137, 912 (2022) · doi:10.1140/epjp/s13360-022-02950-x
[18] Wu, XH; Gao, YT; Yu, X.; Liu, LQ; Ding, CC, Vector breathers, rogue and breather-rogue waves for a coupled mixed derivative nonlinear Schrödinger system in an optical fiber, Nonlinear Dyn., 111, 5641-5653 (2023) · doi:10.1007/s11071-022-08058-2
[19] Feng, CH; Tian, B.; Yang, DY; Gao, XT, Lump and hybrid solutions for a (3+1)-dimensional Boussinesq-type equation for the gravity waves over a water surface, Chin. J. Phys., 83, 515-526 (2023) · Zbl 1541.35377 · doi:10.1016/j.cjph.2023.03.023
[20] Gao, XT; Tian, B.; Feng, CH, In oceanography, acoustics and hydrodynamics: investigations on an extended coupled (2+1)-dimensional Burgers system, Chin. J. Phys., 77, 2818-2824 (2022) · Zbl 07851823 · doi:10.1016/j.cjph.2021.11.019
[21] Shen, Y.; Tian, B.; Cheng, CD; Zhou, TY, Pfaffian solutions and nonlinear waves of a (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics, Phys. Fluids, 35 (2023) · doi:10.1063/5.0135174
[22] Zhou, TY; Tian, B., Auto-Bäcklund transformations, Lax pair, bilinear forms and bright solitons for an extended \((3+1)\)-dimensional nonlinear Schrödinger equation in an optical fiber, Appl. Math. Lett., 133, 108280 (2022) · Zbl 1496.35374 · doi:10.1016/j.aml.2022.108280
[23] Zhao, Z.; Yue, J.; He, L., New type of multiple lump and rogue wave solutions of the \((2+ 1)\)-dimensional Bogoyavlenskii-Kadomtsev-Petviashvili equation, Appl. Math. Lett., 133, 108294 (2022) · Zbl 1495.35080 · doi:10.1016/j.aml.2022.108294
[24] Zhao, Z.; He, L.; Wazwaz, AM, Dynamics of lump chains for the BKP equation describing propagation of nonlinear waves, Chin. Phys. B, 32, 040501 (2023) · doi:10.1088/1674-1056/acb0c1
[25] Zhao, Z.; He, L., A new type of multiple-lump and interaction solution of the Kadomtsev-Petviashvili I equation, Nonlinear Dyn., 109, 1033-1046 (2022) · doi:10.1007/s11071-022-07484-6
[26] Chen, SJ; Lü, X.; Tang, XF, Novel evolutionary behaviors of the mixed solutions to a generalized Burgers equation with variable coefficients, Commun. Nonlinear Sci. Numer. Simul., 95, 105628 (2021) · Zbl 1456.35072 · doi:10.1016/j.cnsns.2020.105628
[27] Lan, ZZ, Periodic, breather and rogue wave solutions for a generalized \((3+ 1)\)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation in fluid dynamics, Appl. Math. Lett., 94, 126-132 (2019) · Zbl 1412.35050 · doi:10.1016/j.aml.2018.12.005
[28] Yang, DY; Tian, B.; Tian, HY; Wei, CC; Shan, WR; Jiang, Y., Darboux transformation, localized waves and conservation laws for an M-coupled variable-coefficient nonlinear Schrödinger system in an inhomogeneous optical fiber, Chaos Solitons Fract., 156, 111719 (2022) · Zbl 1506.78011 · doi:10.1016/j.chaos.2021.111719
[29] Yang, DY; Tian, B.; Hu, CC; Liu, SH; Shan, WR; Jiang, Y., Conservation laws and breather-to-soliton transition for a variable-coefficient modified Hirota equation in an inhomogeneous optical fiber, Wave. Random Complex (2023) · doi:10.1080/17455030.2021.1983237
[30] Kumar, S.; Mohan, B., A study of multi-soliton solutions, breather, lumps, and their interactions for Kadomtsev-Petviashvili equation with variable time coeffcient using Hirota method, Phys. Scr., 96, 125255 (2021) · doi:10.1088/1402-4896/ac3879
[31] Li, L.Q., Gao, Y.T., Yu, X., Jia, T.T., Hu, L., Zhang, C.Y.: Bilinear forms, bilinear Bäcklund transformation, soliton and breather interactions of a damped variable-coefficient fifth-order modified Korteweg-de Vries equation for the surface waves in a strait or large channel. Chin. J. Phys. 77, 915-926 (2022) · Zbl 1541.35432
[32] Osman, MS, One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada-Kotera equation, Nonlinear Dyn., 96, 1491-1496 (2019) · Zbl 1437.35603 · doi:10.1007/s11071-019-04866-1
[33] Zhou, TY; Tian, B.; Chen, YQ; Shen, Y., Painlevé analysis, auto-Bäcklund transformation and analytic solutions of a \((2{+}1)\)-dimensional generalized Burgers system with the variable coefficients in a fluid, Nonlinear Dyn., 108, 2417-2428 (2022) · doi:10.1007/s11071-022-07211-1
[34] Wazwaz, AM, Painlevé analysis for higher-dimensional integrable shallow water waves equations with time-dependent coefficients, Rom. Rep. Phys., 72, 110 (2020)
[35] Wazwaz, AM, Construction of solitary wave solutions and rational solutions for the KdV equation by Adomian decomposition method, Chaos Solitons Fract., 12, 2283-2293 (2001) · Zbl 0992.35092 · doi:10.1016/S0960-0779(00)00188-0
[36] Hammack, JL; Segur, H., The Korteweg-de Vries equation and water waves. Part 2. Comparison with experiments, J. Fluid Mech., 65, 289-314 (1974) · Zbl 0373.76010 · doi:10.1017/S002211207400139X
[37] Karunakar, P.; Chakraverty, S., Effect of Coriolis constant on Geophysical Korteweg-de Vries equation, J. Ocean Eng. Sci., 4, 113-121 (2019) · doi:10.1016/j.joes.2019.02.002
[38] Wazwaz, AM, Multiple kink solutions for two coupled integrable \((2{+}1)\)-dimensional systems, Appl. Math. Lett., 58, 1-6 (2016) · Zbl 1342.35314 · doi:10.1016/j.aml.2016.01.019
[39] Roshid, H.; Ma, WX, Dynamics of mixed lump-solitary waves of an extended (2+1)-dimensional shallow water wave model, Phys. Lett. A, 382, 3262-3268 (2018) · doi:10.1016/j.physleta.2018.09.019
[40] Gao, XY; Guo, YJ; Shan, WR, Reflecting upon some electromagnetic waves in a ferromagnetic film via a variable-coefficient modified Kadomtsev-Petviashvili system, Appl. Math. Lett., 132, 108189 (2022) · Zbl 1504.35522 · doi:10.1016/j.aml.2022.108189
[41] Gao, XY; Guo, YJ; Shan, WR, Symbolically computing the shallow water via a (2+1)-dimensional generalized modified dispersive water-wave system: similarity reductions, scaling and hetero-Bäcklund transformations, Qual. Theory Dyn. Syst., 22, 17 (2023) · Zbl 1514.37093 · doi:10.1007/s12346-022-00684-w
[42] Shen, Y.; Tian, B.; Zhou, TY; Gao, XT, Nonlinear differential-difference hierarchy relevant to the Ablowitz-Ladik equation: Lax pair, conservation laws, \(N\)-fold Darboux transformation and explicit exact solutions, Chaos Silotons Fract., 164 (2022) · Zbl 1508.35159 · doi:10.1016/j.chaos.2022.112460
[43] Gao, X.Y., Guo, Y.J., Shan, W.R., Zhou, T.Y.: Report on an extended three-coupled Korteweg-de Vries system. Ricerche Mat. (2023). doi:10.1007/s11587-023-00769-x
[44] Liu, FY; Gao, YT, Lie group analysis for a higher-order Boussinesq-Burgers system, Appl. Math. Lett., 132, 108094 (2022) · Zbl 1491.35010 · doi:10.1016/j.aml.2022.108094
[45] Hirota, R., The Direct Method in Soliton Theory (2004), New York: Cambridge University Press, New York · Zbl 1099.35111 · doi:10.1017/CBO9780511543043
[46] Yin, YH; Lü, X.; Ma, WX, Bäcklund transformation, exact solutions and diverse interaction phenomena to a \((3+ 1)\)-dimensional nonlinear evolution equation, Nonlinear Dyn., 108, 4181-4194 (2022) · doi:10.1007/s11071-021-06531-y
[47] Chen, SJ; Ma, WX; Lü, X., Bäcklund transformation, exact solutions and interaction behaviour of the (3+1)-dimensional Hirota-Satsuma-Ito-like equation, Commun. Nonlinear Sci. Numer. Simul., 83, 105135 (2020) · Zbl 1456.35178 · doi:10.1016/j.cnsns.2019.105135
[48] Shen, Y.; Tian, B., Bilinear auto-Bäcklund transformations and soliton solutions of a \((3+ 1)\)-dimensional generalized nonlinear evolution equation for the shallow water waves, Appl. Math. Lett., 122 (2021) · Zbl 1476.35082 · doi:10.1016/j.aml.2021.107301
[49] Seadawy, AR; Rizvi, STR; Ahmad, S.; Younisand, M.; Baleanu, D., Lump, lump-one stripe, multiwave and breather solutions for the Hunter-Saxton equation, Open Phys., 19, 1-10 (2021) · doi:10.1515/phys-2020-0224
[50] Zhao, Z.; He, L., Bäcklund transformations and Riemann-Bäcklund method to a (3+1)-dimensional generalized breaking soliton equation, Eur. Phys. J. Plus, 135, 639 (2020) · doi:10.1140/epjp/s13360-020-00662-8
[51] Shen, Y.; Tian, B.; Liu, SH; Zhou, TY, Studies on certain bilinear form, \(N\)-soliton, higher-order breather, periodic-wave and hybrid solutions to a (3+1)-dimensional shallow water wave equation with time-dependent coefficients, Nonlinear Dyn., 108, 2447-2460 (2022) · doi:10.1007/s11071-022-07252-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.