×

In oceanography, acoustics and hydrodynamics: investigations on an extended coupled (2+1)-dimensional Burgers system. (English) Zbl 07851823

Summary: The paper Gao, Guo & Shan, Chin. J. Phys. 70 (2021) 264 has investigated an extended coupled (2+1)-dimensional Burgers system in oceanography, acoustics and hydrodynamics. However, studies on that system can be more complete. Therefore, for that system, we get the same bilinear forms through a different method, i.e., the Hirota method, and construct two sets of the similarity reductions with symbolic computation. Our similarity reductions depend on the constant coefficients in that system.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
Full Text: DOI

References:

[1] Younas, U.; Seadawy, A. R.; Younis, M.; Rizvi, S. T.R., Dispersive of propagation wave structures to the Dullin-Gottwald-Holm dynamical equation in a shallow water waves, Chin. J. Phys., 68, 348-364, 2020 · Zbl 07848606
[2] Karakoc, S. B.G.; Saha, A.; Sucu, D., A novel implementation of Petrov-Galerkin method to shallow water solitary wave pattern and superperiodic traveling wave and its multistability: Generalized Korteweg-de Vries equation, Chin. J. Phys., 68, 605-617, 2020 · Zbl 07848626
[3] Ma, Y. X.; Tian, B.; Qu, Q. X.; Wei, C. C.; Zhao, X., Bäcklund transformations, kink soliton, breather- and travelling-wave solutions for a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation in fluid dynamics, Chin. J. Phys., 73, 600-612, 2021 · Zbl 07837814
[4] Shaddox, H. R.; Brodsky, E. E.; Ramp, S. R.; Davis, K. A., Seismic detection of oceanic internal gravity waves from subaerial seismometers, AGU Advan., 2, Article e2021AV000475 pp., 2020; Gao, X. Y.; Guo, Y. J.; Shan, W. R., Oceanic long-gravity-water-wave investigations on a variable-coefficient nonlinear dispersive-wave system, Wave. Random Complex, 2022, https://doi.org/10.1080/17455030.2022.2039419, in press; Graf, G. M.; Jud, H.; Tauber, C., Topology in shallow-water waves: A violation of Bulk-Edge correspondence, Commun. Math. Phys., 383, 731-761, 2021
[5] Lynch, J. F.; Colosi, J. A.; Gawarkiewicz, G. G.; Duda, T. F.; Pierce, A. D.; Badiey, M.; Katsnelson, B. G.; Miller, J. E.; Siegmann, W.; Chiu, C. S.; Newhall, A., Consideration of fine-scale coastal oceanography and 3-D acoustics effects for the ESME sound exposure model, IEEE J. Oceanic Eng., 31, 33-48, 2006
[6] Gao, X. Y.; Guo, Y. J.; Shan, W. R., In oceanography, acoustics and hydrodynamics: An extended coupled (2+1)-dimensional Burgers system, Chin. J. Phys., 70, 264-270, 2021 · Zbl 07834911
[7] Gao, X. Y.; Guo, Y. J.; Shan, W. R., Scaling and hetero-/auto-Bäcklund transformations with solitons of an extended coupled (2+1)-dimensional Burgers system for the wave processes in hydrodynamics and acoustics, Mod. Phys. Lett. B, 34, Article 2050389 pp., 2020
[8] Wikipedia, Burgers’ equation, 2022, https://encyclopedia.thefreedictionary.com/Burgers
[9] Motsepa, T.; Khalique, C. M., Conservation laws and solutions of a generalized coupled (2+1)-dimensional Burgers system, Comput. Math. Appl., 74, 1333-1339, 2017 · Zbl 1394.35430
[10] Wang, J. Y.; Liang, Z. F.; Tang, X. Y., Infinitely many generalized symmetries and Painlevé analysis of a (2+1)-dimensional Burgers system, Phys. Scr., 89, Article 025201 pp., 2014
[11] Unsal, O.; Tascan, F., Soliton solutions, Bäcklund transformation and Lax pair for coupled Burgers system via Bell polynomials, Z. Naturforch. A, 70, 359-363, 2015
[12] Wazwaz, A. M., Multiple kink solutions for two coupled integrable (2+1)-dimensional systems, Appl. Math. Lett., 58, 1-6, 2016 · Zbl 1342.35314
[13] Yang, D. Y.; Tian, B.; Qu, Q. X.; Du, X. X.; Hu, C. C.; Jiang, Y.; Shan, W. R., Lax pair, solitons, breathers and modulation instability of a three-component coupled derivative nonlinear Schrödinger system for a plasma, Eur. Phys. J. Plus, 137, 189, 2022; Gao, X. Y.; Guo, Y. J.; Shan, W. R., Looking at an open sea via a generalized (2+1)-dimensional dispersive long-wave system for the shallow water: hetero-Bäcklund transformations, bilinear forms and N solitons, Eur. Phys. J. Plus, 136, Article 893 pp., 2021; Liu, F. Y.; Gao, Y. T., Lie group analysis for a higher-order Boussinesq-Burgers system, Appl. Math. Lett., 132, Article 108094 pp., 2022
[14] Hirota, R., The Direct Method in Soliton Theory, 2000, Cambridge University
[15] Gao, X. Y.; Guo, Y. J.; Shan, W. R., Optical waves/modes in a multicomponent inhomogeneous optical fiber via a three-coupled variable-coefficient nonlinear Schrödinger system, Appl. Math. Lett., 120, Article 107161 pp., 2021; Liu, F. Y.; Gao, Y. T.; Yu, X.; Hu, L.; Wu, X. H., Hybrid solutions for the (2+1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation in fluid mechanics, Chaos Solitons Fract., 152, Article 111355 pp., 2021; Yang, D. Y.; Tian, B.; Qu, Q. X.; Zhang, C. R.; Chen, S. S.; Wei, C. C., Lax pair, conservation laws, Darboux transformation and localized waves of a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber, Chaos Solitons Fract., 150, Article 110487 pp., 2021 · Zbl 1491.78015
[16] Shen, Y.; Tian, B.; Zhou, T. Y.; Gao, X. T., Shallow-water-wave studies on a (2+1)-dimensional Hirota-Satsuma-Ito system: X-type soliton, resonant Y-type soliton and hybrid solutions, Chaos Solitons Fract., 157, Article 111861 pp., 2022; Ding, C. C.; Gao, Y. T.; Hu, L.; Deng, G. F.; Zhang, C. Y., Vector bright soliton interactions of the two-component AB system in a baroclinic fluid, Chaos Solitons Fract., 142, Article 110363 pp., 2021; Hu, L.; Gao, Y. T.; Jia, T. T.; Deng, G. F.; Li, L. Q., Higher-order hybrid waves for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation for an irrotational incompressible fluid via the modified Pfaffian technique, Z. Angew. Math. Phys., 72, 75, 2021
[17] Feng, Y. J.; Gao, Y. T.; Li, L. Q.; Jia, T. T., Bilinear form, solitons, breathers and lumps of a (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation in ocean dynamics, fluid mechanics and plasma physics, Eur. Phys. J. Plus, 135, 272, 2020; Gao, X. Y.; Guo, Y. J.; Shan, W. R., Similarity reductions for a (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in nonlinear optics, fluid mechanics and plasma physics, Appl. Comput. Math., 20, 421-429, 2021; Yang, D. Y.; Tian, B.; Tian, H. Y.; Wei, C. C.; Shan, W. R.; Jiang, Y., Darboux transformation, localized waves and conservation laws for an M-coupled variable-coefficient nonlinear Schrödinger system in an inhomogeneous optical fiber, Chaos Solitons Fract., 156, Article 111719 pp., 2022
[18] Ding, C. C.; Gao, Y. T.; Yu, X.; Liu, F. Y.; Wu, X. H., Three-wave resonant interactions: dark-bright-bright mixed N-and high-order solitons, breathers, and their structures, Wave. Random Complex, 2022, https://doi.org/10.1080/17455030.2021.1976437, in press; Shen, Y.; Tian, B.; Gao, X. T., Bilinear auto-Bäcklund transformation, soliton and periodic-wave solutions for a (2+1)-dimensional generalized Kadomtsev-Petviashvili system in fluid mechanics and plasma physics, Chin. J. Phys., 2022, in press; Wang, M.; Tian, B., Lax pair, generalized Darboux transformation and solitonic solutions for a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber, Rom. J. Phys., 66, 119, 2021
[19] Yang, D. Y.; Tian, B.; Hu, C. C.; Liu, S. H.; Shan, W. R.; Jiang, Y., Conservation laws and breather-to-soliton transition for a variable-coefficient modified Hirota equation in an inhomogeneous optical fiber, Wave. Random Complex, 2022, in press; Wu, X. H.; Gao, Y. T.; Yu, X.; Ding, C. C.; Liu, F. Y.; Jia, T. T., Darboux transformation, bright and dark-bright solitons of an N-coupled high-order nonlinear Schrödinger system in an optical fiber, Mod. Phys. Lett. B, 2022, https://doi.org/10.1142/s0217984921505680, in press; Zhou, T. Y.; Tian, B.; Chen, Y. Q.; Shen, Y., Painlevé analysis, auto-Bäcklund transformation and analytic solutions of a (2+1)-dimensional generalized Burgers system with the variable coefficients in a fluid, Nonlinear Dyn., 108, 2417-2428, 2022
[20] Ding, C. C.; Gao, Y. T.; Deng, G. F.; Wang, D.; pair, Lax., Conservation laws, Darboux transformation, breathers and rogue waves for the coupled nonautonomous nonlinear Schrödinger system in an inhomogeneous plasma, Chaos Solitons Fract., 133, Article 109580 pp., 2020; Yang, D. Y.; Tian, B.; Wang, M.; Zhao, X.; Shan, W. R.; Jiang, Y., Lax pair, Darboux transformation, breathers and rogue waves of an N-coupled nonautonomous nonlinear Schrödinger system for an optical fiber or plasma, Nonlinear Dyn., 107, 2657-2666, 2022; Shen, Y.; Tian, B.; Liu, S. H.; Zhou, T. Y., Studies on certain bilinear form, N-soliton, higher-order breather, periodic-wave and hybrid solutions to a (3+1)-dimensional shallow water wave equation with time-dependent coefficients, Nonlinear Dyn., 108, 2447-2460, 2022
[21] Wang, M.; Tian, B., Soliton, multiple-lump, and hybrid solutions for a (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation in plasma physics, fluid mechanics, and ocean dynamics, Rom. Rep. Phys., 73, Article 127 pp., 2021; Feng, Y. J.; Gao, Y. T.; Jia, T. T.; Li, L. Q., Soliton interactions of a variable-coefficient three-component AB system for the geophysical flows, Mod. Phys. Lett. B, 33, Article 1950354 pp., 2019; Wang, M.; Tian, B.; Zhou, T. Y., Darboux transformation, generalized Darboux transformation and vector breathers for a matrix Lakshmanan-Porsezian-Daniel equation in a Heisenberg ferromagnetic spin chain, Chaos Solitons Fract., 152, 111411, 2021
[22] Ma, Y. X.; Tian, B.; Qu, Q. X.; Yang, D. Y.; Chen, Y. Q., Painlevé analysis, Bäcklund transformations and traveling-wave solutions for a (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in a fluid, Int. J. Mod. Phys. B, 35, Article 2150108 pp., 2021; Gao, X. Y.; Guo, Y. J.; Shan, W. R., Auto-Bäcklund transformation, similarity reductions and solitons of an extended (2+1)-dimensional coupled Burgers system in fluid mechanics, Qual. Theory Dyn. Syst., 21, 60, 2022; Yang, D. Y.; Tian, B.; Qu, Q. X.; Yuan, Y. Q.; Zhang, C. R.; Tian, H. Y., Generalized Darboux transformation and the higher-order semirational solutions for a nonlinear Schrödinger system in a birefringent fiber, Mod. Phys. Lett. B, 34, Article 2150013 pp., 2020
[23] Ma, Y. X.; Tian, B.; Qu, Q. X.; Tian, H. Y.; Liu, S. H., Bilinear Bäcklund transformation, breather- and travelling-wave solutions for a (2+1)-dimensional extended Kadomtsev-Petviashvili II equation in fluid mechanics, Mod. Phys. Lett. B, 35, Article 2150315 pp., 2021; Wang, M.; Tian, B., Darboux transformation, generalized Darboux transformation and vector breather solutions for the coupled variable-coefficient cubic-quintic nonlinear Schrödinger system in a non-Kerr medium, twin-core nonlinear optical fiber or waveguide, Wave. Random Complex, 2022, in press; Gao, X. Y.; Guo, Y. J.; Shan, W. R., Symbolic computation on a (2+1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system for water waves, Chaos Solitons Fract., 150, 111066, 2021
[24] Li, L. Q.; Gao, Y. T.; Yu, X.; Deng, G. F.; Ding, C. C., Gramian solutions and solitonic interactions of a (2+1)-dimensional Broer-Kaup-Kupershmidt system for the shallow water, Int. J. Numer. Method. H., 2022, https://doi.org/10.1108/HFF-07-2021-0441, in press; Wang, M.; Tian, B., In an inhomogeneous multicomponent optical fiber: Lax pair, generalized Darboux transformation and vector breathers for a three-coupled variable-coefficient nonlinear Schrödinger system, Eur. Phys. J. Plus, 136, 1002, 2021
[25] Gao, X. Y.; Guo, W. R., Symbolic computation on the long gravity water waves: scaling transformations, bilinear forms, \(N\) solitons and auto-Bäcklund transformation for the variable-coefficient variant Boussinesq system, Chaos Solitons Fract., 152, Article 111392 pp., 2021; Wang, M.; Tian, B.; Qu, Q. X.; Zhao, X. H.; Zhang, Z.; Tian, H. Y., Lump, lumpoff, rogue wave, breather wave and periodic lump solutions for a (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in fluid mechanics and plasma physics, Int. J. Comput. Math., 97, 2474-2486, 2020; Liu, F. Y.; Gao, Y. T.; Yu, X.; Ding, C. C., Wronskian, Gramian, Pfaffian and periodic-wave solutions for a (3+1)-dimensional generalized nonlinear evolution equation arising in the shallow water waves, Nonlinear Dyn., 108, 1599-1616, 2022
[26] Shen, Y.; Tian, B.; Zhao, X.; Shan, W. R.; Jiang, Y., Bilinear form, bilinear auto-Bäcklund transformation, breather and lump solutions for a (3+1)-dimensional generalised Yu-Toda-Sasa-Fukuyama equation in a two-layer liquid or a lattice, Pramana-J. Phys., 95, Article 137 pp., 2021; Wang, M.; Tian, B.; Hu, C. C.; Liu, S. H., Generalized Darboux transformation, solitonic interactions and bound states for a coupled fourth-order nonlinear Schrödinger system in a birefringent optical fiber, Appl. Math. Lett., 119, 106936, 2021; Gao, X. Y.; Guo, Y. J.; Shan, W. R., Similarity reductions for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation in fluid dynamics, Chin. J. Phys., 2022, https://doi.org/10.1016/j.cjph.2022.04.014, in press
[27] Shen, Y.; Tian, B., Bilinear auto-Bäcklund transformations and soliton solutions of a (3+1)-dimensional generalized nonlinear evolution equation for the shallow water waves, Appl. Math. Lett., 122, Article 107301 pp., 2021; Liu, F. Y.; Gao, Y. T.; Yu, X.; Ding, C. C.; Deng, G. F.; Jia, T. T., Painlevé analysis, Lie group analysis and soliton-cnoidal, resonant, hyperbolic function and rational solutions for the modified Korteweg-de Vries-Calogero-Bogoyavlenskii-Schiff equation in fluid mechanics, Chaos Solitons Fract., 144, 110559, 2021; Zhou, T. Y.; Tian, B.; Chen, S. S.; Wei, C. C.; Chen, Y. Q., Bäcklund transformations, Lax pair and solutions of a Sharma-Tasso-Olver-Burgers equation for the nonlinear dispersive waves, Mod. Phys. Lett. B, 35, Article 2150421 pp., 2021
[28] Hu, L.; Gao, Y. T.; Jia, S. L.; Su, J. J.; Deng, G. F., Solitons for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation for an irrotational incompressible fluid via the Pfaffian technique, Mod. Phys. Lett. B, 33, Article 1950376 pp., 2019; Shen, Y.; Tian, B.; Cheng, C. D.; Zhou, T. Y., Bilinear auto-Bäcklund transformation, breather-wave and periodic-wave solutions for a (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Eur. Phys. J. Plus, 136, Article 1159 pp., 2021; Li, L. Q.; Gao, Y. T.; Yu, X.; Jia, T. T.; Hu, L.; Zhang, C. Y., Bilinear forms, bilinear Bäcklund transformation, soliton and breather interactions of a damped variable-coefficient fifth-order modified Korteweg-de Vries equation for the surface waves in a strait or large channel, Chin. J. Phys., 77, 915-926, 2022 · Zbl 1541.35432
[29] Li, M.; Hu, W. K.; Wu, C. F., Rational solutions of the classical Boussinesq-Burgers system, Nonlinear Dyn., 94, 1291-1302, 2018
[30] Tian, B.; Li, W.; Gao, Y. T., Similarity reductions and integrability for the Brusselator reaction diffusion model with symbolic computation, Int. J. Mod. Phys. C, 14, 215-220, 2003 · Zbl 1079.35049
[31] Gao, X. T.; Tian, B.; Shen, Y.; Feng, C. H., Comment on “Shallow water in an open sea or a wide channel: Auto- and non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system”, Chaos Solitons Fract., 151, Article 111222 pp., 2021; Gao, X. Y.; Guo, Y. J.; Shan, W. R., In nonlinear optics, fluid mechanics, plasma physics or atmospheric science: symbolic computation on a generalized variable-coefficient Korteweg-de Vries equation, Acta. Math. Sin.-English Ser., 2022, https://doi.org/10.1007/s10114-022-9778-5, in press; Gao, X. T.; Tian, B., Water-wave studies on a (2+1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system, Appl. Math. Lett., 128, Article 107858 pp., 2022
[32] Ince, E., Ordinary Differential Equations, 1956, Dover: Dover New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.