×

\(L_\infty\)-structures and cohomology theory of compatible \(\mathcal{O}\)-operators and compatible dendriform algebras. (English) Zbl 1535.17020

Summary: The notion of \(\mathcal{O}\)-operator is a generalization of the Rota-Baxter operator in the presence of a bimodule over an associative algebra. A compatible \(\mathcal{O}\)-operator is a pair consisting of two \(\mathcal{O}\)-operators satisfying a compatibility relation. A compatible \(\mathcal{O}\)-operator algebra is an algebra together with a bimodule and a compatible \(\mathcal{O}\)-operator. In this paper, we construct a graded Lie algebra and an \(L_\infty\)-algebra that respectively characterize compatible \(\mathcal{O}\)-operators and compatible \(\mathcal{O}\)-operator algebras as Maurer-Cartan elements. Using these characterizations, we define cohomology of these structures and as applications, we study formal deformations of compatible \(\mathcal{O}\)-operators and compatible \(\mathcal{O}\)-operator algebras. Finally, we consider a brief cohomological study of compatible dendriform algebras and find their relationship with the cohomology of compatible associative algebras and compatible \(\mathcal{O}\)-operators.
©2024 American Institute of Physics

MSC:

17B38 Yang-Baxter equations and Rota-Baxter operators
17B56 Cohomology of Lie (super)algebras

References:

[1] Aguiar, M., Infinitesimal Hopf algebras, New Trends in Hopf Algebra Theory (La Falda, 1999). Contemporary Mathematics Vol. 267, 1-29, 2000, American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 0982.16028
[2] Aguiar, M., Infinitesimal bialgebras, pre-Lie and dendriform algebras, Hopf Algebras. Lecture Notes in Pure and Applied Mathematics Vol. 237, 1-33, 2004, Dekker: Dekker, New York · Zbl 1059.16027
[3] Atkinson, F. V., Some aspects of Baxter’s functional equation, J. Math. Anal. Appl., 7, 1-30, 1963 · Zbl 0118.12903 · doi:10.1016/0022-247x(63)90075-1
[4] Bai, C.; Bellier, O.; Guo, L.; Ni, X., Splitting of operations, Manin products, and Rota-Baxter operators, Int. Math. Res. Not., 2013, 3, 485-524 · Zbl 1314.18010 · doi:10.1093/imrn/rnr266
[5] Bai, C.; Guo, L.; Ni, X., -operators on associative algebras and associative Yang-Baxter equations, Pac. J. Math., 256, 257-289, 2012 · Zbl 1285.16031 · doi:10.2140/pjm.2012.256.257
[6] Baxter, G., An analytic problem whose solution follows from a simple algebraic identity, Pac. J. Math., 10, 731-742, 1960 · Zbl 0095.12705 · doi:10.2140/pjm.1960.10.731
[7] Bolsinov, A. V.; Borisov, A. V., Lax representation and compatible Poisson brackets on Lie algebras, Math. Notes, 72, 11-34, 2002 · Zbl 1042.37041
[8] Cartier, P., On the structure of free Baxter algebras, Adv. Math., 9, 253-265, 1972 · Zbl 0267.60052 · doi:10.1016/0001-8708(72)90018-7
[9] Chtioui, T.; Das, A.; Mabrouk, S., (Co)homology of compatible associative algebras · Zbl 07808410
[10] Connes, A.; Kreimer, D., Renormalization in quantum field theory and the Riemann-Hilbert problem I: The Hopf algebra structure of graphs and the main theorem, Commun. Math. Phys., 210, 249-273, 2000 · Zbl 1032.81026 · doi:10.1007/s002200050779
[11] Das, A., Deformations of associative Rota-Baxter operators, J. Algebra, 560, 144-180, 2020 · Zbl 1458.16008 · doi:10.1016/j.jalgebra.2020.05.016
[12] Das, A., Cohomology and deformations of dendriform algebras, and Dend_∞-algebras, Commun. Algebra, 50, 4, 1544-1567, 2022 · Zbl 1511.17005 · doi:10.1080/00927872.2021.1985130
[13] Das, A.; Mishra, S. K., The L_∞-deformations of associative Rota-Baxter algebras and homotopy Rota-Baxter operators, J. Math. Phys., 63, 5, 051703, 2022 · Zbl 1508.17024 · doi:10.1063/5.0076566
[14] Ebrahimi-Fard, K., Loday-type algebras and the Rota-Baxter relation, Lett. Math. Phys., 61, 139-147, 2002 · Zbl 1035.17001 · doi:10.1023/a:1020712215075
[15] Ebrahimi-Fard, K.; Guo, L., Rota-Baxter algebras and dendriform algebras, J. Pure Appl. Algebra, 212, 320-339, 2008 · Zbl 1132.16032 · doi:10.1016/j.jpaa.2007.05.025
[16] Gerstenhaber, M., On the deformation of rings and algebras, Ann. Math., 79, 1, 59-103, 1964 · Zbl 0123.03101 · doi:10.2307/1970484
[17] Getzler, E., Lie theory for nilpotent L_∞-algebras, Ann. Math., 170, 1, 271-301, 2009 · Zbl 1246.17025 · doi:10.4007/annals.2009.170.271
[18] Guo, L., An Introduction to Rota-Baxter Algebra, 2012, International Press · Zbl 1271.16001
[19] Guo, L.; Keigher, W., Baxter algebras and shuffle products, Adv. Math., 150, 1, 117-149, 2000 · Zbl 0947.16013 · doi:10.1006/aima.1999.1858
[20] Kosmann-Schwarzbach, Y.; Magri, F., Poisson-Nijenhuis structures, Ann. Inst. Henri Poincare, Sect. A, 53, 35-81, 1990 · Zbl 0707.58048
[21] Kuperschmidt, B. A., What a classical r-matrix really is?, J. Nonlinear Math. Phys., 6, 4, 448-488, 1999 · Zbl 1015.17015 · doi:10.2991/jnmp.1999.6.4.5
[22] Liu, J.; Bai, C.; Sheng, Y., Compatible \(\mathcal{O} \)-operators on bimodules over associative algebras, J. Algebra, 532, 80-118, 2019 · Zbl 1420.13035 · doi:10.1016/j.jalgebra.2019.05.013
[23] Loday, J.-L., Dialgebras, Dialgebras and Related Operads. Lecture Notes in Mathematics Vol. 1763, 7-66, 2001, Springer: Springer, Berlin · Zbl 0999.17002
[24] Loday, J.-L.; Vallette, B., Algebraic Operads, Springer
[25] Márquez, S., Compatible associative bialgebras, Commun. Algebra, 46, 9, 3810-3832, 2018 · Zbl 1430.16036 · doi:10.1080/00927872.2018.1424880
[26] Reyman, A. G.; Semenov-Tian-Shansky, M. A., Compatible Poisson structures for Lax equations: An r-matrix approach, Phys. Lett. A, 130, 456-460, 1988 · doi:10.1016/0375-9601(88)90707-4
[27] Rota, G.-C.; Rota, G.-C., Baxter algebras and combinatorial identities. I. Baxter algebras and combinatorial identities. II, Bull. Am. Math. Soc.. Bull. Am. Math. Soc., 75, 330-334, 1969 · Zbl 0319.05008
[28] Semonov-Tian-Shansky, M. A., What is a classical r-matrix?, Funct. Anal. Appl., 17, 259-272, 1983 · Zbl 0535.58031
[29] Stasheff, J., Homotopy associativity of H-spaces. I, Trans. Am. Math. Soc., 108, 275-292, 1963 · Zbl 0114.39402 · doi:10.1090/s0002-9947-1963-99936-3
[30] Tang, R.; Bai, C.; Guo, L.; Sheng, Y., Deformations and their controlling cohomologies of \(\mathcal{O} \)-operators, Commun. Math. Phys., 368, 2, 665-700, 2019 · Zbl 1440.17015 · doi:10.1007/s00220-019-03286-x
[31] Uchino, K., Quantum analogy of Poisson geometry, related dendriform algebras and Rota-Baxter operators, Lett. Math. Phys., 85, 2-3, 91-109, 2008 · Zbl 1243.17002 · doi:10.1007/s11005-008-0259-2
[32] Uchino, K., Twisting on associative algebras and Rota-Baxter type operators, J. Noncommutative Geom., 4, 3, 349-379, 2010 · Zbl 1248.16027 · doi:10.4171/jncg/59
[33] Voronov, T., Higher derived brackets and homotopy algebras, J. Pure Appl. Algebra, 202, 1-3, 133-153, 2005 · Zbl 1086.17012 · doi:10.1016/j.jpaa.2005.01.010
[34] Wang, K.; Zhou, G., The homotopy theory of Rota-Baxter associative algebras of arbitrary weights
[35] Zhang, Y.; Gao, X.; Guo, L., Matching Rota-Baxter algebras, matching dendriform algebras and matching pre-Lie algebras, J. Algebra, 552, 134-170, 2020 · Zbl 1444.16058 · doi:10.1016/j.jalgebra.2020.02.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.