×

Cohomology and deformations of dendriform algebras, and \(\mathrm{Dend}_\infty \)-algebras. (English) Zbl 1511.17005

A dendriform algebra, originally introduced by J.-L. Loday, is vector space \(A\) equipped with two binary operations, \(\prec\) and \(\succ\), that satisfy several compatibility conditions. In this paper, the author defines cohomology of dendriform algebras with coefficient in a representation. The deformation of a dendriform algebra, in the sense of Gerstenhaber, is then described by the cohomology of \(A\) with coefficient in itself. Then the author studies strongly homotopy dendriform algebras, called \(\mathrm{Dend}_\infty\)-algebras, in which the dendriform identities are true up to homotopies. They can be regarded as splitting of \(A_\infty\)-algebras. The author defines Rota-Baxter operator on \(A_\infty\)-algebras that yields \(\mathrm{Dend}_\infty\)-algebras. Finally, the author classifies skeletal and strict \(\mathrm{Dend}_\infty\)-algebras.

MSC:

17A30 Nonassociative algebras satisfying other identities
16E40 (Co)homology of rings and associative algebras (e.g., Hochschild, cyclic, dihedral, etc.)
18M70 Algebraic operads, cooperads, and Koszul duality

References:

[1] Aguiar, M., Pre-Poisson algebras, Lett. Math. Phys, 54, 4, 263-277 (2000) · Zbl 1032.17038 · doi:10.1023/A:1010818119040
[2] Baez, J. C.; Crans, A. S., Higher-dimensional algebra. VI. Lie 2-algebras, Theory Appl. Categ, 12, 492-538 (2004) · Zbl 1057.17011
[3] Balavoine, D., Homology and cohomology with coefficients, of an algebra over a quadratic operad, J. Pure Appl. Algebra, 132, 3, 221-258 (1998) · Zbl 0967.18004 · doi:10.1016/S0022-4049(97)00131-X
[4] Baxter, G., An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math, 10, 3, 731-742 (1960) · Zbl 0095.12705 · doi:10.2140/pjm.1960.10.731
[5] Das, A., Deformations of associative Rota-Baxter operators, J. Algebra, 560, 144-180 (2020) · Zbl 1458.16008 · doi:10.1016/j.jalgebra.2020.05.016
[6] Das, A., Hom-associative algebras up to homotopy, J. Algebra, 556, 836-878 (2020) · Zbl 1454.16008 · doi:10.1016/j.jalgebra.2020.03.020
[7] Das, A., Deformations of Loday-type algebras and their morphisms, J. Pure Appl. Algebra, 225, 6, 106599 (2021) · Zbl 1476.16028 · doi:10.1016/j.jpaa.2020.106599
[8] Ebrahimi-Farb, K., Loday-type algebras and the Rota-Baxter relation, Lett. Math. Phys, 61, 2, 139-147 (2002) · Zbl 1035.17001
[9] Ebrahimi-Fard, K.; Guo, L., Rota-Baxter algebras and dendriform algebras, J. Pure Appl. Algebra, 212, 2, 320-339 (2008) · Zbl 1132.16032 · doi:10.1016/j.jpaa.2007.05.025
[10] Ebrahimi-Fard, K.; Manchon, D.; Patras, F., New identities in dendriform algebras, J. Algebra, 320, 2, 708-727 (2008) · Zbl 1153.17003 · doi:10.1016/j.jalgebra.2007.12.013
[11] Gerstenhaber, M., The cohomology structure of an associative ring, Ann. Math, 78, 2, 267-288 (1963) · Zbl 0131.27302 · doi:10.2307/1970343
[12] Gerstenhaber, M., On the deformation of rings and algebras, Ann. Math, 79, 1, 59-103 (1964) · Zbl 0123.03101 · doi:10.2307/1970484
[13] Gerstenhaber, M., On deformations of rings and algebras III, Ann. Math, 88, 1, 1-34 (1968) · Zbl 0182.05902 · doi:10.2307/1970553
[14] Gerstenhaber, M.; Voronov, A. A., Homotopy G-algebras and moduli space operad, Int. Math. Res. Notices, 1995, 3, 141-153 (1995) · Zbl 0827.18004 · doi:10.1155/S1073792895000110
[15] Ginzburg, V.; Kapranov, M., Koszul duality for operads, Duke Math. J, 76, 1, 203-272 (1994) · Zbl 0855.18006 · doi:10.1215/S0012-7094-94-07608-4
[16] Gubarev, V.; Kolesnikov, P., Embedding of dendriform algebras into Rota-Baxter algebras, Cent. Eur. J. Math, 11, 2, 226-245 (2013) · Zbl 1262.18009
[17] Lada, T.; Markl, M., Strongly homotopy Lie algebras, Commun. Algebra, 23, 6, 2147-2161 (1995) · Zbl 0999.17019 · doi:10.1080/00927879508825335
[18] Lada, T.; Stasheff, J., Introduction to SH Lie algebras for physicists, Int. J. Theor. Phys., 32, 7, 1087-1103 (1993) · Zbl 0824.17024 · doi:10.1007/BF00671791
[19] Leroux, P., Ennea-algebras, J. Algebra, 281, 1, 287-302 (2004) · Zbl 1134.17301 · doi:10.1016/j.jalgebra.2004.06.022
[20] Loday, J.-L., Dialgebras, Dialgebras and Related Operads, 7-66 (2001), Berlin: Springer, Berlin · Zbl 0999.17002
[21] Loday, J.-L.; Ronco, M., Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-Theory, Trialgebras and families of polytopes, 369-398 (2004), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1065.18007
[22] Loday, J.-L.; Vallette, B., Algebraic Operads, Grundlehren Der Mathematischen Wissenschaften, 346, xxiv+, 634p (2012), Heidelberg: Springer, Heidelberg · Zbl 1260.18001
[23] Pei, J.; Bai, C.; Guo, L., Splitting of operads and Rota-Baxter operators on operads, Appl. Categor. Struct, 25, 4, 505-538 (2017) · Zbl 1423.18031 · doi:10.1007/s10485-016-9431-5
[24] Rota, G.-C., Baxter algebras and combinatorial identities. I, II, Bull. Am. Math. Soc, 75, 2, 325-329 (1969) · Zbl 0192.33801 · doi:10.1090/S0002-9904-1969-12156-7
[25] Stasheff, J., Homotopy associativity of H-spaces II, Trans. Am. Math. Soc, 108, 2, 293-312 (1963) · Zbl 0114.39402 · doi:10.2307/1993609
[26] Vallette, B., Manin products, Koszul duality, Loday algebras and Deligne conjecture, J. Reine Angew. Math, 620, 105-164 (2008) · Zbl 1159.18001
[27] Yau, D., Gerstenhaber structure and Deligne’s conjecture for Loday algebras, J. Pure Appl. Algebra, 209, 3, 739-752 (2007) · Zbl 1165.16007 · doi:10.1016/j.jpaa.2006.07.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.