×

Single-step PMQHSS and new PMQHSS methods for complex symmetric linear systems with strongly dominant skew-Hermitian parts. (English) Zbl 07922757

Summary: In order to solve complex symmetric linear equations more stably and quickly, we design a single-step preconditioned MQHSS (SPMQHSS) iteration method and a new preconditioned MQHSS (NPMQHSS) iteration method. Under suitable conditions, we give the convergence theories of the SPMQHSS and NPMQHSS iteration methods. The upper bounds on the spectral radius of the SPMQHSS and NPMQHSS methods and the quasi-optimal parameters which minimize two upper bounds are given, respectively. Furthermore, we also present the reason why the SPMQHSS and NPMQHSS methods have the same quasi-optimal parameters. In addition, we also analyze the properties of the SPMQHSS method with the parameter matrix being selected as the skew-Hermitian part of the coefficient matrix. Finally, some tested problems are reported to validate the theoretical correct and compare the effectiveness of the proposed methods with several existing ones.

MSC:

65F10 Iterative numerical methods for linear systems
65H10 Numerical computation of solutions to systems of equations
Full Text: DOI

References:

[1] Arridge, SR, Optical tomography in medical imaging, Inverse Probl., 15, R41, 1999 · Zbl 0926.35155
[2] Axelsson, O.; Kucherov, A., Real valued iterative methods for solving complex symmetric linear systems, Numer. Linear Algebra Appl., 7, 197-218, 2000 · Zbl 1051.65025
[3] Bai, Z-Z, Quasi-HSS iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts, Numer. Linear Algebra Appl., 25, e2116, 2018 · Zbl 1513.65063
[4] Bai, Z-Z; Benzi, M.; Chen, F., Modified HSS iteration methods for a class of complex symmetric linear systems, Computing, 87, 93-111, 2010 · Zbl 1210.65074
[5] Bai, Z-Z; Benzi, M.; Chen, F., On preconditioned MHSS iteration methods for complex symmetric linear systems, Numer. Algorithms, 56, 297-317, 2011 · Zbl 1209.65037
[6] Bai, Z-Z; Golub, GH, Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems, IMA J. Numer. Anal., 27, 1-23, 2007 · Zbl 1134.65022
[7] Bai, Z-Z; Golub, GH; Ng, MK, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24, 603-626, 2003 · Zbl 1036.65032
[8] Bai, Z-Z; Golub, GH; Pan, J-Y, Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 98, 1-32, 2004 · Zbl 1056.65025
[9] Balani, FB; Hajarian, M., On the generalized AOR and CG iteration methods for a class of block two-by-two linear systems, Numer. Algorithms, 90, 669-685, 2022 · Zbl 1491.65027
[10] Benzi, M.; Bertaccini, D., Block preconditioning of real-valued iterative algorithms for complex linear systems, IMA J. Numer. Anal., 28, 598-618, 2008 · Zbl 1145.65022
[11] Benzi, M.; Gander, MJ; Golub, GH, Optimization of the Hermitian and skew-Hermitian splitting iteration for saddle-point problems, BIT Numer. Math., 43, 881-900, 2003 · Zbl 1052.65015
[12] Benzi, M.; Golub, GH, A preconditioner for generalized saddle point problems, SIAM J. Matrix Anal. Appl., 26, 20-41, 2004 · Zbl 1082.65034
[13] Bertaccini, D., Efficient preconditioning for sequences of parametric complex symmetric linear systems, Electron. Trans. Numer. Anal., 18, 49-64, 2004 · Zbl 1066.65048
[14] Chen, F.; Li, T-Y; Lu, K-Y; Muratova, GV, Modified QHSS iteration methods for a class of complex symmetric linear systems, Appl. Numer. Math., 164, 3-14, 2021 · Zbl 1460.65033
[15] Clemens, M.; Weiland, T.; Van Rienen, U., Comparison of krylov-type methods for complex linear systems applied to high-voltage problems, IEEE Trans. Magn., 34, 3335-3338, 1998
[16] Cui, J-J; Huang, Z-G; Li, B-B; Xie, X-F, Single step real-valued iterative method for linear system of equations with complex symmetric matrices, Bull. Korean Math. Soc., 60, 1181-1199, 2023 · Zbl 07769985
[17] Day, D.; Heroux, MA, Solving complex-valued linear systems via equivalent real formulations, SIAM J. Sci. Comput., 23, 480-498, 2001 · Zbl 0992.65020
[18] Dehghan, M.; Dehghani-Madiseh, M.; Hajarian, M., A generalized preconditioned MHSS method for a class of complex symmetric linear systems, Math. Model. Anal., 18, 561-576, 2013 · Zbl 1281.65058
[19] Van Dijk, W.; Toyama, FM, Accurate numerical solutions of the time-dependent \(s\) chrödinger equation, Phys. Rev. E, 75, 036707, 2007
[20] Elman, HC; Silvester, DJ; Wathen, AJ, Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations, Numer. Math., 90, 665-688, 2002 · Zbl 1143.76531
[21] Feriani, A.; Perotti, F.; Simoncini, V., Iterative system solvers for the frequency analysis of linear mechanical systems, Comput. Methods Appl. Mech. Eng., 190, 1719-1739, 2000 · Zbl 0981.70005
[22] Frommer, A.; Lippert, T.; Medeke, B.; Schilling, K., Numerical Challenges in Lattice Quantum Chromodynamics, 1999, Berlin: Springer, Berlin · Zbl 0957.00052
[23] Hezari, D.; Edalatpour, V.; Salkuyeh, DK, Preconditioned GSOR iterative method for a class of complex symmetric system of linear equations, Numer. Linear Algebra Appl., 22, 761-776, 2015 · Zbl 1363.65049
[24] Horn, RA; Johnson, CR, Matrix Analysis, 2013, Cambridge: Cambridge University Press, Cambridge · Zbl 1267.15001
[25] Huang, Y-Y; Chen, G-L, A relaxed block splitting preconditioner for complex symmetric indefinite linear systems, Open Math., 16, 561-573, 2018 · Zbl 1388.65033
[26] Huang, Z-G, A new double-step splitting iteration method for certain block two-by-two linear systems, Comput. Appl. Math., 39, 1-42, 2020 · Zbl 1463.65047
[27] Huang, Z-G, Efficient block splitting iteration methods for solving a class of complex symmetric linear systems, J. Comput. Appl. Math., 395, 113574, 2021 · Zbl 1470.65054
[28] Huang, Z-G, Modified two-step scale-splitting iteration method for solving complex symmetric linear systems, Comput. Appl. Math., 40, 122, 2021 · Zbl 1476.65041
[29] Huang, Z-G; Wang, L-G; Xu, Z.; Cui, J-J, Preconditioned accelerated generalized successive overrelaxation method for solving complex symmetric linear systems, Comput. Math. Appl., 77, 1902-1916, 2019 · Zbl 1442.65041
[30] Krukier, LA; Chikina, LG; Belokon, TV, Triangular skew-symmetric iterative solvers for strongly nonsymmetric positive real linear system of equations, Appl. Numer. Math., 41, 89-105, 2002 · Zbl 1004.65042
[31] Krukier, LA; Martynova, TS; Bai, Z-Z, Product-type skew-Hermitian triangular splitting iteration methods for strongly non-Hermitian positive definite linear systems, J. Comput. Appl. Math., 232, 3-16, 2009 · Zbl 1184.65038
[32] Li, B-B; Cui, J-J; Huang, Z-G; Xie, X-F, On preconditioned MQHSS iterative method for solving a class of complex symmetric linear systems, Comput. Appl. Math., 41, 250, 2022 · Zbl 1513.65076
[33] Li, C-X; Wu, S-L, A single-step HSS method for non-Hermitian positive definite linear systems, Appl. Math. Lett., 44, 26-29, 2015 · Zbl 1315.65032
[34] Li, L.; Huang, T-Z; Liu, X-P, Modified Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, Numer. Linear Algebra Appl., 14, 217-235, 2007 · Zbl 1199.65109
[35] Li, W-W; Wang, X., A modified GPSS method for non-Hermitian positive definite linear systems, Appl. Math. Comput., 234, 253-259, 2014 · Zbl 1298.65057
[36] Li, X.; Yang, A-L; Wu, Y-J, Lopsided PMHSS iteration method for a class of complex symmetric linear systems, Numer. Algorithms, 66, 555-568, 2014 · Zbl 1298.65058
[37] Poirier, B., Efficient preconditioning scheme for block partitioned matrices with structured sparsity, Numer. Linear Algebra Appl., 7, 715-726, 2000 · Zbl 1051.65059
[38] Pour, HN; Goughery, HS, New Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems, Numer. Algorithms, 69, 207-225, 2015 · Zbl 1317.65091
[39] Saad, Y.; Schultz, MH, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869, 1986 · Zbl 0599.65018
[40] Salkuyeh, DK; Hezari, D.; Edalatpour, V., Generalized successive overrelaxation iterative method for a class of complex symmetric linear system of equations, Int. J. Comput. Math., 92, 802-815, 2015 · Zbl 1317.65092
[41] Shirilord, A.; Dehghan, M., Single step iterative method for linear system of equations with complex symmetric positive semi-definite coefficient matrices, Appl. Math. Comput., 426, 127111, 2022 · Zbl 1511.65055
[42] Siahkolaei, TS; Salkuyeh, DK, A new double-step method for solving complex Helmholtz equation, Hacettepe J. Math. Stat., 49, 1245-1260, 2019 · Zbl 1478.65102
[43] Simoncini, V.; Benzi, M., Spectral properties of the Hermitian and skew-Hermitian splitting preconditioner for saddle point problems, SIAM J. Matrix Anal. Appl., 26, 377-389, 2004 · Zbl 1083.65047
[44] Sogabe, T.; Zhang, S-L, A COCR method for solving complex symmetric linear systems, J. Comput. Appl. Math., 199, 297-303, 2007 · Zbl 1108.65028
[45] Yang, A-L; Zhang, W-H; Wu, Y-J, Minimum residual modified HSS iteration method for a class of complex symmetric linear systems, Numer. Algorithms, 86, 1543-1559, 2021 · Zbl 1470.65057
[46] Wang, L.; Bai, Z-Z, Skew-Hermitian triangular splitting iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts, BIT Numer. Math., 44, 363-386, 2004 · Zbl 1069.65031
[47] Wang, T.; Zheng, Q-Q; Lu, L-Z, A new iteration method for a class of complex symmetric linear systems, J. Comput. Appl. Math., 325, 188-197, 2017 · Zbl 1365.65087
[48] Wang, X.; Xiao, X-Y; Zheng, Q-Q, A single-step iteration method for non-Hermitian positive definite linear systems, J. Comput. Appl. Math., 346, 471-482, 2019 · Zbl 1404.65019
[49] Wu, S-L, Several variants of the Hermitian and skew-Hermitian splitting method for a class of complex symmetric linear systems, Numer. Linear Algebra Appl., 22, 338-356, 2015 · Zbl 1363.65055
[50] Wu, W-T, On minimization of upper bound for the convergence rate of the QHSS iteration method, Commun. Appl. Math. Comput., 1, 263-282, 2019 · Zbl 1449.65068
[51] Xiao, X-Y; Wang, X., A new single-step iteration method for solving complex symmetric linear systems, Numer. Algorithms, 78, 643-660, 2018 · Zbl 1391.65076
[52] Xiao, X-Y; Wang, X.; Yin, H-W, Efficient single-step preconditioned HSS iteration methods for complex symmetric linear systems, Comput. Math. Appl., 74, 2269-2280, 2017 · Zbl 1398.65053
[53] Xiao, X-Y; Wang, X.; Yin, H-W, Efficient preconditioned NHSS iteration methods for solving complex symmetric linear systems, Comput. Math. Appl., 75, 235-247, 2018 · Zbl 1478.65023
[54] Yang, A-L, On the convergence of the minimum residual HSS iteration method, Appl. Math. Lett., 94, 210-216, 2019 · Zbl 1411.65055
[55] Yang, A-L; Cao, Y.; Wu, Y-J, Minimum residual Hermitian and skew-Hermitian splitting iteration method for non-Hermitian positive definite linear systems, BIT Numer. Math., 59, 299-319, 2019 · Zbl 1432.65033
[56] Zeng, M-L, Inexact modified QHSS iteration methods for complex symmetric linear systems of strong skew-Hermitian parts, IAENG Int. J. Appl. Math., 51, 109-115, 2021
[57] Zhang, J-H; Dai, H., A new splitting preconditioner for the iterative solution of complex symmetric indefinite linear systems, Appl. Math. Lett., 49, 100-106, 2015 · Zbl 1382.65083
[58] Zhang, J-H; Dai, H., A new block preconditioner for complex symmetric indefinite linear systems, Numer. Algorithms, 74, 889-903, 2017 · Zbl 1366.65049
[59] Zhang, J-H; Wang, Z-W; Zhao, J., Double-step scale splitting real-valued iteration method for a class of complex symmetric linear systems, Appl. Math. Comput., 353, 338-346, 2019 · Zbl 1429.65073
[60] Zhang, J-L; Fan, H-T; Gu, C-Q, An improved block splitting preconditioner for complex symmetric indefinite linear systems, Numer. Algorithms, 77, 451-478, 2018 · Zbl 1388.65031
[61] Zheng, Z.; Huang, F-L; Peng, Y-C, Double-step scale splitting iteration method for a class of complex symmetric linear systems, Appl. Math. Lett., 73, 91-97, 2017 · Zbl 1375.65056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.