×

Hyperbolic balance laws: interplay between scales and randomness. Abstracts from the workshop held February 25 – March 1, 2024. (English) Zbl 07921244

Summary: Hyperbolic balance laws are fundamental in the mathematical modeling of transport-dominated processes in natural, socio-economic and engineering sciences. The aim of the workshop was to discuss open questions in the area of nonlinear hyperbolic conservation and balance laws. We have focused on a delicate interplay between scale hierarchies and random/stochastic effects and discuss them from analytical, numerical and modeling point of view. This leads to questions of admissibility criteria connecting to ill-posedness of weak entropy solutions, hyperbolic problems with non-local terms, mean field theory, multiscale and structure preserving numerical methods, random solutions and uncertainty quantification methods, as well as data-based methods.

MSC:

35-06 Proceedings, conferences, collections, etc. pertaining to partial differential equations
00B05 Collections of abstracts of lectures
00B25 Proceedings of conferences of miscellaneous specific interest
35L65 Hyperbolic conservation laws
35L40 First-order hyperbolic systems
35L60 First-order nonlinear hyperbolic equations
35R60 PDEs with randomness, stochastic partial differential equations
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
76F10 Shear flows and turbulence
82B40 Kinetic theory of gases in equilibrium statistical mechanics

References:

[1] D. Amadori and L. Gosse, Error Estimates for Well-Balanced Schemes on Simple Balance Laws: One-Dimensional Position-Dependent Models, BCAM Springer Briefs in Mathemat-ics, Springer, 2015. · Zbl 1332.65132
[2] W. Barsukow, Stationarity preserving schemes for multi-dimensional linear systems, Math-ematics of Computation, 88 (2019), 1621-1645. · Zbl 1415.65207
[3] W. Barsukow and C. Klingenberg, Exact solution and a truly multidimensional Godunov scheme for the acoustic equations, ESAIM: M2AN, 56 (2022).
[4] W. Barsukow, R. Loubère, and P.-H. Maire, A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes, submitted to Math. Comp., (2023).
[5] G. Gallice, A. Chan, R. Loubère, and P.-H. Maire, Entropy stable and positivity preserv-ing godunov-type schemes for multidimensional hyperbolic systems on unstructured grid, J. Comput. Phys., 468 (2022), 111493. · Zbl 07578902
[6] A. Harten, P. D. Lax, and B. van Leer. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM review, 25 (1983), 35-61. · Zbl 0565.65051
[7] R. Jeltsch and M. Torrilhon, On curl-preserving finite volume discretizations for shallow water equations, BIT Numerical Mathematics, 46 (2006), 35-53. · Zbl 1153.76045
[8] T. B. Lung and P. L. Roe, Toward a reduction of mesh imprinting, International Journal for Numerical Methods in Fluids, 76 (2014), 450-470.
[9] K. W. Morton and P. L. Roe, Vorticity-preserving Lax-Wendroff-type schemes for the system wave equation, SIAM J. Sci. Comput., 23 (2001), 170-192. · Zbl 0994.35011
[10] S. Mishra and E. Tadmor, Constraint preserving schemes using potential-based fluxes II. genuinely multi-dimensional central schemes for systems of conservation laws, ETH preprint, 32 (2009). References
[11] S. Boscarino, High-Order Semi-implicit Schemes for Evolutionary Partial Differential Equa-tions with Higher Order Derivatives, J. Sci. Comput., 96 (2023). · Zbl 07708312
[12] U. M. Ascher, S. J. Ruuth, and R. J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math. 25 (1997), 151-167. · Zbl 0896.65061
[13] M. P. Calvo, J. D. Frutos, and J. Novo, Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations, Appl. Numer. Math. 37 (2001), 535-549. · Zbl 0983.65106
[14] C. A. Kennedy and M. H. Carpenter. Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math. 44 (2003), 139-181. · Zbl 1013.65103
[15] S. Boscarino and G. Russo. On a class of uniformly accurate IMEX Runge-Kutta schemes and applications to hyperbolic systems with relaxation SIAM J. Sci. Comput. 31 (2009), 1926-1945. · Zbl 1193.65162
[16] R. E. Ewing and M. F. Wheeler, Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal., 17 (1980), 351-365. · Zbl 0458.76092
[17] G. Dimarco and L. Pareschi, Asymptotic preserving implicit-explicit Runge-Kutta methods for nonlinear kinetic equations, SIAM J. Numer. Anal. 51.2 (2013), 1064-1087. · Zbl 1268.76055
[18] P. Cavaliere, G. Zavarise, and M. Perillo, Modeling of the carburizing and nitriding processes, Comp Mater Sci, 46 (2009), 26-35.
[19] C. Cercignani, I. M. Gamba, J. W. Jerome, and C.-W. Shu,Device benchmark comparisons via kinetic, hydrodynamic, and high-field models, Comput Methods Appl Mech Engrg, 181 (2000), 381-392. · Zbl 0966.76080
[20] C. Cercignani, I. M. Gamba, and C. D. Levermore, High field approximations to Boltzmann-Poisson system boundary conditions in a semiconductor, Appl Math Lett, 10 (1997), 111-117. · Zbl 0894.76072
[21] J. Yan and C.-W. Shu, A local discontinuous Galerkin method for KdV type equations, SIAM J. Numer. Anal. 40 (2002), 769-791. · Zbl 1021.65050
[22] D. J. Korteweg and G. De Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag. 91 (2011), 1007-1028.
[23] T. B. Benjamin, J. L. Bona, and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 272 (1972), 47-78. · Zbl 0229.35013
[24] J. L. Bona, K. S. Promislow, and C. E. Wayne, Higher-order asymptotics of decaying solutions of some nonlinear, dispersive, dissipative wave equations, Non-linearity 8 (1995), 1179-1206. · Zbl 0837.35130
[25] S. M. Han, H. Benaroya, and T. Wei, Dynamics of transversely vibrating beams using four engineering theories, Journal of Sound and Vibration, v225 (1999), 935-988. · Zbl 1235.74075
[26] D. Levy, C.-W. Shu, and J. Yan, Local discontinuous Galerkin methods for nonlinear dis-persive equations, J. Comput. Phys. 196 (2004), 751-772. · Zbl 1055.65109
[27] A. Chertock and D. Levy, Particle methods for dispersive equations, J. Comput. Phys., 171 (2001), 708-730. · Zbl 0991.65008
[28] P. Rosenau, and J. M. Hyman, Compactons: solitons with finite wavelength, Phys. Rev. Lett., 70 (1993), 564-567. · Zbl 0952.35502
[29] H. Wang, Q. Zhang, S. Wang, and C-W. Shu,Local discontinuous Galerkin methods with explicit-implicit-null time discretizations for solving nonlinear diffusion problems, Science China Mathematics, 63 (2020), 187-208.
[30] S. Boscarino, F. G. LeFloch, and G. Russo High-order asymptotic-preserving methods for fully nonlinear relaxation problems, SIAM J. Sci. Comput., 36 (2014), A377-A395 · Zbl 1426.76455
[31] S. Boscarino, R. Bürger, P. Mulet, G. Russo, and L. M. Villada, Linearly implicit IMEX Runge-Kutta methods for a class of degenerate convection-diffusion problems, SIAM J. Sci. Comput., 37 (2015), B305-B331. · Zbl 1320.65131
[32] S. Boscarino, R. Bürger, P. Mulet,G. Russo, and L. M. Villada, On linearly implicit IMEX Runge-Kutta methods for degenerate convection-diffusion problems modeling polydisperse sedimentation. Bulletin of the Brazilian Mathematical Society, New Series, 47 (2016), 171-185. · Zbl 1338.65223
[33] S. Boscarino, F. Filbet, and G. Russo, High Order Semi-implicit Schemes for time dependnet Partial Differential Equations, J. Sci. Comput., 68 (2016), 975-100. · Zbl 1353.65075
[34] M. Tan, J. Cheng, and C.-W. Shu,Stability of high order finite difference and local discontin-uous Galerkin schemes with explicit-implicit-null time-marching for high order dissipative and dispersive equations, J. Comput. Phys. 464 (2022). · Zbl 07540358
[35] L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes and applications to hy-perbolics ystems with relaxations, J. Sci. Comput., 25 (2005), 129-155. · Zbl 1203.65111
[36] B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35 (1998), 2440-2463. · Zbl 0927.65118
[37] H. Shi and Y. Li, Local discontinuous Galerkin methods with implicit-explicit multistep time-marching for solving the nonlinear Cahn-Hilliard equation, J. Comput. Phys., 394 (2019), 719-731. · Zbl 1452.65249
[38] Q. Tao, Y. Xu, and C.-W. Shu, An ultraweak-local discontinuous Galerkin method for PDEs with high order spatial derivatives, Math. Comput. 89 (2020), 2753-2783. · Zbl 1446.65118
[39] Y. Xu and C.-W Shu, Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations, Comput. Methods Appl. Mech. Eng. 195 (2006), 3430-3437. · Zbl 1124.76035
[40] J. Yan and C.-W. Shu, Local discontinuous Galerkin methods for partial differential equa-tions with higher order derivatives, J. Sci. Comput. 17 (2002), 1-4. · Zbl 1003.65115
[41] W. Hundsdorfer and J. Verwer, Numerical solution of time-dependent advection-diffusion-reaction equations, 33 (2003), Berlin: Springer. References · Zbl 1030.65100
[42] R. Abgrall and S. Mishra, Uncertainty quantification for hyperbolic systems of conserva-tion laws, Handbook of numerical methods for hyperbolic problems, Handb. Numer. Anal., vol. 18, Elsevier/North-Holland, Amsterdam, (2017), 507-544. · Zbl 1368.65205
[43] R. Abgrall and S. Tokareva, The stochastic finite volume method, Uncertainty quantification for hyperbolic and kinetic equations, SEMA SIMAI Springer Ser., vol. 14, Springer, Cham, (2017), 1-57. · Zbl 1404.65108
[44] B. Després, G. Poëtte, and D. Lucor, Robust uncertainty propagation in systems of conser-vation laws with the entropy closure method, Uncertainty quantification in computational fluid dynamics, Lect. Notes Comput. Sci. Eng., vol. 92, Springer, Heidelberg, (2013), 105-149. · Zbl 1276.76072
[45] A. Ditkowski, G. Fibich, and A. Sagiv, Density estimation in uncertainty propagation prob-lems using a surrogate model, SIAM/ASA J. Uncertain. Quantif. 8 (2020), no. 1, 261-300. · Zbl 1483.65024
[46] W. S. Don, R. Li, B.-S. Wang, and Y. H. Wang, A novel and robust scale-invariant WENO scheme for hyperbolic conservation laws, J. Comput. Phys. 448 (2022), Paper No. 110724, 23 pp. · Zbl 1537.65112
[47] G. Geraci, P. M. Congedo, R. Abgrall, and G. Iaccarino, A novel weakly-intrusive non-linear multiresolution framework for uncertainty quantification in hyperbolic partial differential equations, J. Sci. Comput. 66 (2016), 358-405. · Zbl 1338.65011
[48] A. Kurganov, S. Noelle, and G. Petrova, Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput. 23 (2001), 707-740. · Zbl 0998.65091
[49] A. Kurganov and G. Petrova, A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system, Commun. Math. Sci. 5 (2007), 133-160. · Zbl 1226.76008
[50] P. Li, T. T. Li, W. S. Don, and B.-S. Wang, Scale-invariant multi-resolution alternative WENO scheme for the Euler equations, J. Sci. Comput. (2023), Paper No. 15, 32 pp. · Zbl 1504.65239
[51] M. Petrella, S. Tokareva, and E. F. Toro, Uncertainty quantification methodology for hy-perbolic systems with application to blood flow in arteries, J. Comput. Phys. 386 (2019), 405-427. · Zbl 1452.76130
[52] S. Tokareva, A. Zlotnik, and V. Gyrya, Stochastic finite volume method for uncertainty quantification of transient flow in gas pipeline networks, Appl. Math. Model. 125 (2024), no. part B, 66-84.
[53] B.-S. Wang and W. S. Don, Affine-invariant WENO weights and operator, Appl. Numer. Math. 181 (2022), 630-646. · Zbl 1502.65090
[54] D. Xiu, Numerical methods for stochastic computations, Princeton University Press, Prince-ton, NJ, 2010, A spectral method approach. References · Zbl 1210.65002
[55] F. Ancona and M. T. Chiri, Attainable profiles for conservation laws with flux function spatially discontinuous at a single point, ESAIM Control Optim. Calc. Var., 26 (2020), Paper No. 124, 33. · Zbl 1458.35263
[56] F. Ancona and A. Marson, On the attainable set for scalar nonlinear conservation laws with boundary control, SIAM J. Control Optim., 36 (1) (1998), 290-312. · Zbl 0919.35082
[57] B. Andreianov, C. Donadello, S. S. Ghoshal, and U. Razafison, On the attainable set for a class of triangular systems of conservation laws, J. Evol. Equ., 15 (2015), 503-532. · Zbl 1336.35231
[58] M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Springer Science & Business Media, 2008. · Zbl 1134.49022
[59] G. Barles, An introduction to the theory of viscosity solutions for first-order Hamilton-Jacobi equations and applications,In Hamilton-Jacobi equations: approximations, numerical analysis and applications, Springer, (2013), 49-109. · Zbl 1269.49043
[60] A. Bressan, Hyperbolic systems of conservation laws, volume 20 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2000. · Zbl 0997.35002
[61] G. M. Coclite and N. H. Risebro, Viscosity solutions of Hamilton-Jacobi equations with discontinuous coefficients, J. Hyperbolic Differ. Equ., 4 (2007), 771-795. · Zbl 1144.35016
[62] R. M. Colombo and V. Perrollaz, Initial data identification in conservation laws and Hamilton-Jacobi equations, J. Math. Pures Appl. 138 (2020), 1-27. · Zbl 1439.35128
[63] R. M. Colombo, V. Perrollaz, and A. Sylla, Conservation laws and Hamilton-Jacobi equa-tions with space inhomogeneity, J. Evol. Equ., 23 (2023), 1-72. · Zbl 1518.35228
[64] R. M. Colombo, V. Perrollaz, and A. Sylla, Initial data identification in space dependent conservation laws and Hamilton-Jacobi equations, 2023, arXiv, math.AP 2304.05092.
[65] R. M. Colombo, V. Perrollaz, and A. Sylla, L ∞ stationary solutions to non homogeneous conservation laws, To appear, Proceedings of the XVIII International Conference on Hy-perbolic Problems: Theory, Numerics, Applications.
[66] R. M. Colombo, V. Perrollaz, and A. Sylla, Peculiarities of space dependent conservation laws: Inverse design and asymptotics, To appear, Proceedings of the XVIII International Conference on Hyperbolic Problems: Theory, Numerics, Applications.
[67] M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), 1-42. · Zbl 0599.35024
[68] C. M. Dafermos, yperbolic conservation laws in continuum physics, volume 325 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathemati-cal Sciences], Springer-Verlag, Berlin, fourth edition, 2016. · Zbl 1364.35003
[69] C. Esteve-Yagüe and E. Zuazua, Reachable set for Hamilton-Jacobi equations with non-smooth Hamiltonian and scalar conservation laws, Nonlinear Anal., 227 (2023), Paper No. 113167, 18. · Zbl 1504.35133
[70] H. Holden and N. H. Risebro, Front tracking for hyperbolic conservation laws, volume 152 of Applied Mathematical Sciences, Springer, Heidelberg, second edition, 2015. · Zbl 1346.35004
[71] H. Ishii, Uniqueness of unbounded viscosity solution of Hamilton-Jacobi equations, Indiana Univ. Math. J., 33 (1984), 721-748. · Zbl 0551.49016
[72] K. H. Karlsen and N. H. Risebro, A note on front tracking and equivalence between viscosity solutions of Hamilton-Jacobi equations and entropy solutions of scalar conservation laws, Nonlinear Anal., 50(4, Ser. A: Theory Methods) (2002), 455-469. · Zbl 1010.35026
[73] S. N. Kruzhkov, First order quasilinear equations with several independent variables, Math-ematics of the USSR-Sbornik, 81 (1970), 228-255. · Zbl 0202.11203
[74] T. Liard and E. Zuazua, Initial data identification for the one-dimensional Burgers equation, IEEE Trans. Automat. Control, 67 (2022), 3098-3104. References · Zbl 1537.93156
[75] M. Dumbser, O. Zanotti, E. Gaburro, and I. Peshkov, A well-balanced discontinuous Galerkin method for the first-order Z4 formulation of the Einstein-Euler system, Journal of Computational Physics 504 (2024), 112875. · Zbl 07842861
[76] M. Dumbser, O. Zanotti, and G. Puppo, A monolithic first-order BSSNOK formulation of the Einstein-Euler equations and its solution with conservative finite difference CWENO schemes, Physical Review D, in preparation. References
[77] E. Chiodaroli and E. Feireisl, Glimm’s method and density of wild data for the Euler system of gas dynamics, Nonlinearity 37 (2024), Paper No. 035005, 12 · Zbl 1533.35251
[78] C. De Lellis and L. Székelyhidi, Jr., On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal. 195 (2010), 225-260. · Zbl 1192.35138
[79] E. Feireisl, M. Lukáčová-Medvi ďová, H. Mizerová, and B. She, Numerical analysis of com-pressible fluid flows, Springer-Verlag, Cham, 2022 · Zbl 1493.76001
[80] F. Merle, P. Raphaël, I. Rodnianski, and J. Szeftel, On the implosion of a compressible fluid II: singularity formation, Ann. of Math. (2) 196 (2022), 779-889 References · Zbl 1497.35385
[81] A. Bressan, M. T. Chiri, and W. Shen, A Posteriori Error Estimates for Numerical Solutions to Hyperbolic Conservation Laws, Archive for Rational Mechanics and Analysis, 241 (2021), 357-402. · Zbl 1472.35018
[82] G. Chen, S. G. Krupa, and A. F. Vasseur, Uniqueness and weak-BV stability for 2 × 2 conservation laws. Arch. Ration. Mech. Anal., 246 (2022), 299-332. · Zbl 1505.35265
[83] A. Dedner and J. Giesselmann, A posteriori analysis of fully discrete method of lines dis-continuous Galerkin schemes for systems of conservation laws, SIAM J. Numer. Anal., 54 (2016), 3523-3549. · Zbl 1354.65181
[84] J. Giesselmann, Ch. Makridakis, and T. Pryer, A posteriori analysis of discontinuous Galerkin schemes for systems of hyperbolic conservation laws, SIAM J. Numer. Anal., 53 (2015), 1280-1303. · Zbl 1457.65107
[85] J. Giesselmann and S. G. Krupa, Theory of shifts, shocks, and the intimate connections to L 2 -type a posteriori error analysis of numerical schemes for hyperbolic problems, Arxiv 2306.06538.
[86] J. Giesselmann and A. Sikstel, A-posteriori error estimates for systems of hyperbolic con-servation laws, Arxiv 2305.01340.
[87] S. G. Krupa and A. F. Vasseur, On uniqueness of solutions to conservation laws verifying a single entropy condition. J. Hyperbolic Differ. Equ., 16 (2019), 157-191. · Zbl 1453.35122
[88] A. Harten, Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Comm. Pure Appl. Math., 48 (1995), 1305-1342. · Zbl 0860.65078
[89] Ch. Makridakis, Space and time reconstructions in a posteriori analysis of evolution prob-lems, ESAIM Proc., 21 (2007), 31-44. References · Zbl 1128.65062
[90] R. Abgrall, A combination of residual distribution and the active flux formulations or a new class of schemes that can combine several writings of the same hyperbolic problem: application to the 1d Euler equations, Commun. Appl. Math. Comput., 5 (2023), 370-402. · Zbl 1524.65305
[91] R. Abgrall and W. Barsukow, Extensions of active flux to arbitrary order of accuracy, ESAIM: M2AN, 57 (2023), 991-1027. · Zbl 1518.65080
[92] E. Chudzik, C. Helzel, and M. Lukáčová-Medvid’ová, Active flux methods for hyperbolic systems using the method of bicharacteristics, J. Sci. Comput., 99 (2024), 16. · Zbl 1534.65153
[93] D. Calhoun, E. Chudzik, and C. Helzel, The Cartesian grid active flux method with adaptive mesh refinement, J. Sci. Comput., 94 (2023), 54. · Zbl 1516.65072
[94] T. A. Eymann and P. L. Roe, Multidimensional active flux schemes, In: 21st AIAA com-putational fluid dynamics conference (2013), p. 2940.
[95] Y. F. Kiechle, E. Chudzik, and C. Helzel, An active flux method for the Vlasov-Poisson system, In: Franck, E., Fuhrmann, J., Michel-Dansac, V., Navoret, L. (eds) Finite Volumes for Complex Applications X-Volume 2, Hyperbolic and Related Problems. FVCA 2023.
[96] M. Lukáčová-Medvid’ová, K. W. Morton, and G. Warnecke, Evolution Galerkin methods for hyperbolic systems in two space dimensions, Math. Comput., 69 (2000), 1355-1384. · Zbl 0951.35076
[97] P. L. Roe, Designing CFD methods for bandwidth-a physical approach, Computers & Fluids, 214 (2021), 104774. · Zbl 1521.76579
[98] I. Samani and P. L. Roe, Acoustics on a coarse grid, AIAA SCITECH 2023 Forum (2023). References
[99] R. Camassa and D. D. Holm, An integrable shallow water equation with peaked soliton, Phys. Rev. Lett. 71 (11) (1993), 1661-664. · Zbl 0972.35521
[100] L. Galimberti, H. Holden, K. H. Karlsen, and P. H.C. Pang, Global existence of dissipative solutions to the Camassa-Holm equation with transport noise, J. Differ. Equations, 387 (2024), 1-103. · Zbl 1533.35376
[101] H. Holden, K. H. Karlsen, and P. H.C. Pang, Global well-posedness of the viscous Camassa-Holm equation with gradient noise, Discrete Contin. Dyn. Syst., 43 (2) (2022), 568-61. References · Zbl 1515.35376
[102] R. Abgrall, W. Barsukow, and C. Klingenberg, The Active Flux method for the Euler equa-tions on Cartesian grids, preprint, see https://arxiv.org/abs/2310.00683 (2023)
[103] R.Abgrall and W. Barsukow, A hybrid finite element-finite volume method for conservation laws, Proc. of the NumHyp21 conference, AMC 447 (see https://arxiv.org/abs/2208.14477) (2023) · Zbl 1511.76057
[104] T. A. Eymann and P. L. Roe, Multidimensional active flux schemes, In 21st AIAA compu-tational fluid dynamics conference, 2013 References
[105] R. Abgrall, A combination of residual distribution and the active flux formulations or a new class of schemes that can combine several writings of the same hyperbolic problem: application to the 1D euler equations, Commun. Appl. Math. Comput., 5 (2023), 370-402. · Zbl 1524.65305
[106] R. Abgrall and W. Barsukow, Extensions of Active Flux to arbitrary order of accuracy, ESAIM: Mathematical Modelling and Numerical Analysis, 57 (2023), 991-1027. · Zbl 1518.65080
[107] R. Abgrall and W. Barsukow, A hybrid finite element-finite volume method for conservation laws, Appl. Math. Comput., 447 (2023), 127846. References · Zbl 1511.76057
[108] J. D. Anderson, Hypersonic and High-Temperature Gas Dynamics, AIAA education series (2000).
[109] G. V. Candler, D. Mavriplis, and L. Treviño, Current Status and Future Prospects for the Numerical Simulation of Hypersonic Flows, 47th AIAA Aerospace Sciences Meeting AIAA 2009-513 (2009).
[110] A. Chan, G. Gallice, R. Loubère, and P.-H. Maire, Positivity preserving and entropy consis-tent approximate Riemann solvers dedicated to the high-order MOOD-based Finite Volume discretization of Lagrangian and Eulerian gas dynamics, Computers & Fluids, (2021). · Zbl 1521.76405
[111] G. Gallice, Positive and Entropy Stable Godunov-Type Schemes for Gas Dynamics and MHD Equations in Lagrangian or Eulerian Coordinates, Numer. Math., 94 (2003), 673-713. · Zbl 1092.76044
[112] G. Gallice, A. Chan, R. Loubère, and P.-H. Maire, Entropy stable and positivity preserving Godunov-type schemes for multidimensional hyperbolic systems on unstructured grid, J. Comput. Phys., (2022). · Zbl 07578902
[113] R. Loubère, P.-H. Maire, and B. Rebourcet, Staggered and colocated Finite Volume scheme for Lagrangian hydrodynamics, Handbook of Numerical Methods for Hyperbolic Problems: Basic and Fundamental Issues, edited by R. Abgrall and C.-W. Shu Chapter 13 (2016), 319-352.
[114] J. J. Quirk, A contribution to the great Riemann solver debate, International Journal on Numerical Methods for Fluids, 18 (1994), 555-574. References · Zbl 0794.76061
[115] L. Micalizzi and D. Torlo, A new efficient explicit deferred correction framework: analy-sis and applications to hyperbolic PDEs and adaptivity, Commun. Appl. Math. Comput. (2023), (1-36).
[116] L. Micalizzi, D. Torlo, and W. Boscheri, Efficient iterative arbitrary high-order methods: an adaptive bridge between low and high order, Commun. Appl. Math. Comput. (2023), 1-38.
[117] M. H. Veiga, L. Micalizzi, and D. Torlo, On improving the efficiency of ader methods, Appl. Math. Comput. 466 (2024), 128426. References · Zbl 07832794
[118] S. Görtz and M. Oberlack, High-moment scaling laws of wall-bounded turbulent shear flows: Invariant solutions to the multi-point moment equations, under review with Phys. Rev. Fluids, (2024).
[119] S. Hoyas and J. Jiménez, Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003, Phys. Fluids, 18, (2006), 011702.
[120] Hoyas, S. and Oberlack, M. and Alcántara-Ávila, F. and Kraheberger, S. V. and Laux, J., Wall turbulence at high friction reynolds numbers, Phys. Rev. Fluids, 7, (2022), 014602.
[121] Hultmark, M. and Vallikivi, M. and Bailey, S. C. C. and Smits, A. J., Turbulent pipe flow at extreme reynolds numbers, Phys. Rev. Lett., 108, (2012), 094501.
[122] Klingenberg, D. and Plümacher, D. and Oberlack, M., Symmetries and turbulence modeling, Phys. Fluids, 32, (2020), 025108.
[123] Lee, M. and Moser, R. D., Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200. J. Fluid Mech., 774, (2015) 395-415.
[124] Oberlack, M., A unified approach for symmetries in plane parallel turbulent shear flows, J. Fluid Mech., 427, (2001), 299-328. · Zbl 1007.76067
[125] Oberlack, M. and Hoyas, S. and Kraheberger, S. V. and Alcántara-Ávila, F. and Laux, J., Turbulence statistics of arbitrary moments of wall-bounded shear flows: A symmetry approach, Phys. Rev. Lett., 128, (2022), 024502.
[126] Oberlack, M. and Peters, N., Closure of the Two-Point Correlation Equation in Physical Space as a Basis for Reynolds Stress Models, (1993), 85-94. Elsevier Science.
[127] Oberlack, M. and Rosteck, A., New statistical symmetries of the multi-point equations and its importance for turbulent scaling laws, Discrete Continuous Dyn. Syst, 3, (2010), 451-471. · Zbl 1210.76085
[128] Oberlack, M. and Wac lawczyk, M. and Rosteck, A. and Avsarkisov, V., Symmetries and their importance for statistical turbulence theory, Mechanical Engineering Reviews, 2, (2015), 15-00157.
[129] Rosteck, A. M., Scaling laws in turbulence -a theoretical approach using lie-point symme-tries, PhD thesis, Technische Universität, Darmstadt, (2014).
[130] Wac lawczyk, M. and Staffolani, N. and Oberlack, M. and Rosteck, A. and Wilczek, M. and Friedrich, R., Statistical symmetries of the lundgren-monin-novikov hierarchy, Physical Review E, 90, (2014), 013022.
[131] Yamamoto, Y. and Tsuji, Y., Numerical evidence of logarithmic regions in channel flow at Reτ = 8000, Phys. Rev. Fluids, 3, (2018), 012602.
[132] Zimmerman, S. and Philip, J. and Monty, J. and Talamelli, A. and Marusic, I. and Ganap-athisubramani, B. and Hearst, R. J. and Bellani, G. and Baidya, R. and Samie, M. and et al. A comparative study of the velocity and vorticity structure in pipes and boundary layers at friction reynolds numbers up to 10 4 , J. Fluid Mech., 869, (2019), 182-213. · Zbl 1415.76378
[133] Örlü, R. and Fiorini, T. and Segalini, A. and Bellani, G. and Talamelli, A. and Alfredsson, P. H., Reynolds stress scaling in pipe flow turbulence-first results from ciclope, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375, (2017), 20160187. References
[134] R. Abgrall, M. Lukáčová-Medvid’ová, and P. Öffner, On the convergence of residual distri-bution schemes for the compressible Euler equations via dissipative weak solutions, Math. Models Methods Appl. Sci. 33 (01), (2023), 139-173. · Zbl 1514.65123
[135] D. Breit, T. Moyo, and P. Öffner, Discontinuous Galerkin methods for the complete sto-chastic Euler equations, in preparation, (2024).
[136] D. Breit, E. Feireisl, and M. Hofmanova, On solvability and ill-posedness of the compressible Euler system subject to stochastic forces, Anal. PDE 13(2), (2020), 271-402. · Zbl 1435.35289
[137] E. Feireisl, M. Lukáčová-Medvid’ová, H. Mizerová, and B. She Numerical analysis of com-pressible fluid flows, MS&A, Model. Simul. Appl., Springer, (2021). · Zbl 1493.76001
[138] D. Kuzmin, M. Lukáčová-Medvid’ová, and P. Öffner, Consistency and convergence of flux-corrected finite element methods for nonlinear hyperbolic problems, arXiv: 2308.14872, (2023).
[139] M. Lukáčová-Medvid’ová and P. Öffner, Convergence of discontinuous Galerkin schemes for the Euler equations via dissipative weak solutions, Appl. Math. Comput. 436, (2023). · Zbl 1510.65249
[140] T. Moyo, Dissipative solutions and Markov selection to the complete stochastic Euler system, J. Diff. Equ. 365, (2023), 408-464. References · Zbl 1516.35318
[141] Y. Petrova, S. Tikhomirov, and Y. Efendiev, Propagating terrace in a two-tubes model of gravitational fingering, (2024) arXiv:2401.05981.
[142] G. Menon and F. Otto, Dynamic scaling in miscible viscous fingering, Commun. Math. Phys., 257 (2005), 303-317. · Zbl 1135.76323
[143] F. Bakharev, A. Enin, A. Groman, A. Kalyuzhnyuk, S. Matveenko, Y. Petrova, I. Starkov, and S. Tikhomirov, Velocity of viscous fingers in miscible displacement: Comparison with analytical models,J. Comput. Appl. Math., 402 (2022), 113808. · Zbl 1481.76203
[144] J.S. Nijjer, D.R. Hewitt, and J. A. Neufeld, The dynamics of miscible viscous fingering from onset to shutdown, J. Fluid Mech., 837 (2018), 520-545. · Zbl 1419.76618
[145] F. Bakharev, A. Enin, S. Matveenko, N. Rastegaev, D. Pavlov, and S. Tikhomirov, Rela-tion between size of mixing zone and intermediate concentration in miscible displacement, (2023), arXiv:2310.14260.
[146] G. Boffetta and S. Musacchio, Dimensional effects in Rayleigh-Taylor mixing, Philosophical Transactions of the Royal Society A 380 (2022), 20210084.
[147] A. Armiti-Juber and C. Rohde, On Darcy-and Brinkman-type models for two-phase flow in asymptotically flat domains, Computat. Geosci., 23 (2019), 285-303. · Zbl 1414.76051
[148] B. Temple, Systems of conservation laws with invariant submanifolds, Trans. Amer. Math. Soc., 280(2) (1983), 781-795. References · Zbl 0559.35046
[149] T. Arbogast, C. S. Huang, X. Zhao, and D. N. King, A third order, implicit, finite volume, adaptive Runge-Kutta WENO scheme for advection-diffusion equations, Comput. Methods Appl. Mech. Engrg. 368 (2020). · Zbl 1506.76108
[150] I. Cravero, G. Puppo, M. Semplice, and G. Visconti, CWENO: uniformly accurate recon-structions for balance laws, Math. Comput., 87 (2018), 1689-1719. · Zbl 1412.65102
[151] S. Gottlieb, J. S. Mullen, and S. J. Ruuth, A Fifth Order Flux Implicit WENO Method, J. Sci. Comp. 27 (2006), 271-287. · Zbl 1107.76051
[152] G. Puppo and M. Semplice, Numerical entropy and adaptivity for finite volume schemes, Commun. Comput. Phys., 10 (2011), 1132-1160. · Zbl 1373.76140
[153] G. Puppo, M. Semplice, and G. Visconti, Quinpi: Integrating conservation laws with CWENO implicit methods, Comm. Appl. Math. & Comput., 5 (2023), 343-369. · Zbl 1524.65461
[154] G. Puppo, M. Semplice, and G. Visconti, Quinpi: Integrating stiff hyperbolic systems with implicit high order finite volume schemes, arXiv:2307.14685, submitted to Commun. Com-put. Phys., (2024). References
[155] M. Ciallella, D. Torlo, and M. Ricchiuto, Arbitrary High Order WENO Finite Volume Scheme with Flux Globalization for Moving Equilibria Preservation, J. Sci. Comp., 96 (2023). · Zbl 07708330
[156] Y. Mantri, P. Öffner, and M. Ricchiuto, Fully well balanced entropy controlled DGSEM for shallow water flows: global flux quadrature and cell entropy correction, J. Comput. Phys., 498 (2024).
[157] L. Micalizzi, M. Ricchiuto, and R. Abgrall, Novel well-balanced continuous interior penalty stabilizations, J. Sci. Comp., to appear. · Zbl 07878713
[158] M. Kazolea, C. Parés, and M. Ricchiuto, Discrete well-balanced WENO finite difference schemes via a global flux quadrature method using multi-step ODE integrator weights, in preparation.
[159] W. Barsukow, M. Ricchiuto, and D. Torlo, Structure preserving methods via Global Flux quadrature: divergence preservation and curl involution with continuous Finite Elements, in preparation. References
[160] David I. Ketcheson, L. Lóczi, and G. Russo, An effective medium equation for weakly non-linear shallow water waves over periodic bathymetry, SIAM MMS, submitted.
[161] D. I. Ketcheson, M. Parsani, and R. J. LeVeque, High-order Wave Propagation Algorithms for Hyperbolic Systems, SIAM J. Sci. Comput., 35 (2013), A351-A377. · Zbl 1264.65151
[162] D. H. Yong and J. Kevorkian, Solving boundary-value problems for systems of hyperbolic conservation laws with rapidly varying coefficients, Studies in Applied Mathematics, 108 (2002), 259-303. · Zbl 1152.35435
[163] R. J. LeVeque and D. H. Yong, Solitary waves in layered nonlinear media, SIAM J. Appl. Math., 63 (2003), 1539-1560. References · Zbl 1075.74047
[164] X. Huang and Z. Xin, A blow-up criterion for classical solutions to the compressible Navier-Stokes equations. Sci. China Math., 53 (2010), 671-686. · Zbl 1256.35059
[165] R. Klein, An applied mathematical view of meteorological modelling, In: Applied Mathe-matics Entering the 21st Century, pp. 227-269. SIAM, Philadelphia, PA, 2004. · Zbl 1163.86307
[166] M. Lukáčová-Medvid’ová, J. Rosemeier, P. Spichtinger, and B. Wiebe, IMEX Finite Vol-ume Methods for Cloud Simulation. In: Finite Volumes for Complex Applications VIII -Hyperbolic, Elliptic and Parabolic Problems, pp. 179-187. Springer International Publish-ing, Cham, 2017. · Zbl 1365.76163
[167] M. Lukáčová-Medvid’ová and A. Schömer, Compressible Navier-Stokes equations with po-tential temperature transport: stability of the strong solution and numerical error estimates, 25(1), 2023. · Zbl 1511.76088
[168] M. Lukáčová-Medvid’ová and A. Schömer, Existence of dissipative solutions to the com-pressible Navier-Stokes system with potential temperature transport. J. Math. Fluid Mech., 24(82), 2022. · Zbl 1496.76116
[169] M. Lukáčová-Medvid’ová and A. Schömer, Compressible Navier-Stokes equations with po-tential temperature transport: strong solutions and conditional regularity. (in preparation)
[170] Y. Sun, C. Wang, and Z. Zhang, A Beale-Kato-Majda blow-up criterion for the 3-D com-pressible Navier-Stokes equations. J. Math. Pures Appl., 95(2011), 36-47. · Zbl 1205.35212
[171] A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method, Ann. Sc. Norm. Super. Pisa Cl. Sci., 10 (1983), 607-647. · Zbl 0542.35062
[172] A. Valli and W. M. Za jączkowski, Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Comm. Math. Phys., 103 (1986), 259-296. · Zbl 0611.76082
[173] D. Maltese, M. Michálek, P. B. Mucha, A. Novotný, M. Pokorný, and E. Zatorska, Exis-tence of weak solutions for compressible Navier-Stokes equations with entropy transport. J. Differential Equations, 261 (2016), 4448-4485. References · Zbl 1351.35106
[174] J. Březina, E. Feireisl, and A. Novotný, Stability of strong solutions to the Navier-Stokes-Fourier system, SIAM J. Math. Anal., 52 (2020), 1761-1785. · Zbl 1439.35365
[175] E. Feireisl, M. Lukáčová-Medvid’ová, H. Mizerová, and B. She, Numerical Analysis of Com-pressible Fluid Flows, Springer-Verlag, Cham, 2021. · Zbl 1493.76001
[176] E. Feireisl, M. Lukáčová-Medvid’ová, H. Mizerová, and B. She, On the convergence of a finite volume method for the Navier-Stokes-Fourier system, IMA J. Numer. Anal., 41 (2021), 2388-2422. · Zbl 07528308
[177] E. Feireisl, M. Lukáčová-Medvid’ová, B. She, and Y. Yuan, Convergence and error analysis of compressible fluid flows with random data: Monte Carlo method, Math. Models Methods Appl. Sci., 32 (2022), 2887-2925. · Zbl 1524.65012
[178] E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids, Birkhäuser-Basel, 2017. · Zbl 1432.76002
[179] High-order alternative finite difference WENO (A-WENO) schemes and their applications Chi-Wang Shu The essentially non-oscillatory (ENO) and weighted ENO (WENO) finite differ-ence schemes are popular high order numerical methods for solving hyperbolic conservation laws, balance laws and related equations. Comparing with finite volume ENO/WENO schemes, finite difference schemes have a dimension by di-mension feature and are much cheaper in computational cost for multi-dimensional problems. Most finite difference ENO/WENO solvers are based on the Shu-Osher lemma [4], converting the design of numerical flux in a conservative finite difference References
[180] Y. Jiang, C.-W. Shu, and M. Zhang, An alternative formulation of finite difference weighted ENO schemes with Lax-Wendroff time discretization for conservation laws, SIAM Journal on Scientific Computing, 35 (2013), A1137-A1160. · Zbl 1266.65144
[181] Y. Jiang, C.-W. Shu, and M. Zhang, Free-stream preserving finite difference schemes on curvilinear meshes, Methods and Applications of Analysis, 21 (2014), 1-30. · Zbl 1292.65091
[182] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics, 77 (1988), 439-471. · Zbl 0653.65072
[183] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, II, Journal of Computational Physics, 83 (1989), 32-78. · Zbl 0674.65061
[184] Z. Xu and C.-W. Shu, Local characteristic decomposition free high order finite difference WENO schemes for hyperbolic systems endowed with a coordinate system of Riemann in-variants, SIAM Journal on Scientific Computing, to appear. · Zbl 07837064
[185] Z. Xu and C.-W. Shu, A high-order well-balanced alternative finite difference WENO (A-WENO) method with the exact conservation property for systems of hyperbolic balance laws, Preprint.
[186] F. Zheng, C.-W. Shu, and J. Qiu, A high order conservative finite difference scheme for compressible two-medium flows, Journal of Computational Physics, 445 (2021), 110597. Computing statistical Navier-Stokes solutions Stephan Simonis (joint work with Siddhartha Mishra) We develop stochastic lattice Boltzmann methods (LBMs) for efficiently approxi-mating statistical solutions to the incompressible Navier-Stokes equations (NSE) in three spatial dimensions. Entropic space-time adaptive kinetic relaxation fre-quencies allow for stable and consistent numerical solutions with decreasing viscos-ity. Single level Monte Carlo (MC) and stochastic Galerkin (SG) methods (Zhong et al., 2024) are used to approximate responses, e.g. from random perturbations References
[187] U. S. Fjordholm, S. Mishra, and F. Weber, On the vanishing viscosity limit of statisti-cal solutions of the incompressible Navier-Stokes equations, ArXiv preprint (2021). doi: 10.48550/ARXIV.2110.04674 · doi:10.48550/ARXIV.2110.04674
[188] C. Foias and G. Prodi, Sur les solutions statistiques des équations de Navier-Stokes, Annali di Matematica Pura ed Applicata 111(1) (1976), 307-330. doi: 10.1007/BF02411822 · Zbl 0344.76015 · doi:10.1007/BF02411822
[189] I. V. Karlin, F. Bösch, and S. S. Chikatamarla, Gibbs’ principle for the lattice-kinetic theory of fluid dynamics, Physical Review E 90(3) (2014), 031302. doi: 10.1103/Phys-RevE.90.031302 · doi:10.1103/Phys-RevE.90.031302
[190] M. J. Krause, A. Kummerländer, S.J. Avis, H. Kusumaatmaja, D. Dapelo, F. Klemens, M. Gaedtke, N. Hafen, A. Mink, R. Trunk, J. E. Marquardt, M.-L. Maier, M. Haussmann, and S. Simonis, OpenLB-Open source lattice Boltzmann code, Computers & Mathematics with Applications 81 (2021), 258-288. doi: 10.1016/j.camwa.2020.04.033 · Zbl 1524.76287 · doi:10.1016/j.camwa.2020.04.033
[191] S. Lanthaler, S. Mishra, and C. Parés-Pulido, Statistical solutions of the incompressible Euler equations, Mathematical Models and Methods in Applied Sciences 31(02) (2021a), 223-292. doi: 10.1142/S0218202521500068 · Zbl 1473.35422 · doi:10.1142/S0218202521500068
[192] S. Lanthaler, S. Mishra, and C. Parés-Pulido, On the conservation of energy in two-dimensional incompressible flows, Nonlinearity 34(2) (2021b), 1084. doi: 10.1088/1361-6544/abb452 · Zbl 1464.35232 · doi:10.1088/1361-6544/abb452
[193] K.O. Lye, Computation of statistical solutions of hyperbolic systems of conservation laws, ETH Zürich (2020), Doctoral thesis. doi: 10.3929/ethz-b-000432014 · doi:10.3929/ethz-b-000432014
[194] S. Simonis, T. Rohner, and S. Mishra, Computing statistical Navier-Stokes solutions with stochastic lattice Boltzmann methods, In preparation (2024).
[195] M. Zhong, T. Xiao, M.J. Krause, M. Frank, and S. Simonis, A stochastic Galerkin lattice Boltzmann method for incompressible fluid flows with uncertainties, SSRN preprint (2024). doi: 10.2139/ssrn.4739337 · doi:10.2139/ssrn.4739337
[196] D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws, NoDEA Nonlinear Differential Equations Appl. 4 (1997), 1-42. · Zbl 0868.35069
[197] F. Ancona, A. Marson, and L. V Spinolo, Existence of vanishing physical viscosity solu-tions of characteristic initial-boundary value problems for systems of conservation laws, submitted. Also arXiv:2401.14865.
[198] S. Bianchini and L. V. Spinolo, The boundary Riemann solver coming from the real vanishing viscosity approximation, Arch. Ration. Mech. Anal., 191 (2009), 1-96. · Zbl 1171.35072
[199] S. Bianchini and L. V. Spinolo, Characteristic boundary layers for mixed hyperbolic-parabolic systems in one space dimension and applications to the Navier-Stokes and MHD equations, Comm. Pure Appl. Math., 73 (2020), 2180-2247. · Zbl 1452.35143
[200] A. Bressan, Hyperbolic systems of conservation laws, volume 20 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, 2000. · Zbl 0997.35002
[201] A. Bressan, G. Chen, and Q. Zhang, On finite time BV blow-up for the p-system. Comm. Partial Differential Equations 43 (2018), 1242-1280. · Zbl 1418.35042
[202] M. Gisclon, Étude des conditions aux limites pour un système strictement hyperbolique, via l’approximation parabolique, J. Math. Pures Appl. 75 (1996), 485-508. · Zbl 0869.35061
[203] H. K. Jenssen, Blowup for systems of conservation laws, SIAM J. Math. Anal. 31 (2000), 894-908. · Zbl 0969.35091
[204] D. Serre, Systems of conservation laws. 1 & 2 Cambridge University Press, 1999. References · Zbl 0930.35001
[205] M. Crouzeix, Numerical range and functional calculus in Hilbert space, J. Funct. Anal., 244 (2007), pp. 668-690. · Zbl 1116.47004
[206] M. Crouzeix and C. Palencia, The numerical range is a (1 + √ 2)-spectral set, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 649-655. · Zbl 1368.47006
[207] H.-O. Kreiss and G. Scherer, Method of lines for hyperbolic differential equations, SINUM 29(3), 1992, 640-646. · Zbl 0754.65078
[208] H.-O. Kreiss and L. Wu, On the stability definition of difference approximations for the initial boundary value problem, Appl. Numerical Math., 12 (1-3) 1993, 213-227. · Zbl 0782.65119
[209] E. Tadmor, Runge-Kutta methods are stable, ArXiv:2312.15546 (2023). References
[210] G. Boillat, Nonlinear hyperbolic fields and waves, In Recent mathematical methods in non-linear wave propagation (Montecatini Terme, 1994), volume 1640 of Lecture Notes in Math., pages 1-47. Springer, Berlin, 1996. · Zbl 0877.35080
[211] K. O. Friedrichs and P. D. Lax, Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. U.S.A., 68 (1971), 1686-1688. · Zbl 0229.35061
[212] J. W. Helton and V. Vinnikov, Linear matrix inequality representation of sets, Comm. Pure Appl. Math., 60 (2007), 654-674. · Zbl 1116.15016
[213] M. Herty and F. Thein, Stabilization of a multi-dimensional system of hyperbolic bal-ance laws, Mathematical Control and Related Fields, https://doi.org/10.3934/mcrf.2023033, 2023. · Zbl 07897760 · doi:10.3934/mcrf.2023033
[214] M. Herty and F. Thein, Boundary feedback control for hyperbolic systems, ESAIM: Con-trol, Optimisation and Calculus of Variations (submitted), http://arxiv.org/abs/2303.05598, 2023. References
[215] E. Romenski and E. F. Toro, Compressible Two-Phase Flows: Two-Pressure Models and Numerical Methods, Comput. Fluid Dyn. J., 13 (2004), 403-416.
[216] E. Romenski, D. Drikakis, and E. F. Toro, Conservative Models and Numerical Methods for Compressible Two-Phase Flow, J. Sci. Comput., 42 (2010), 68-95. · Zbl 1203.76095
[217] M. Lukáčová-Medvid’ová, G. Puppo, and A. Thomann, An all Mach number finite volume method for isentropic two-phase flow, J. Numer. Math., 31 (2023), 175-204. · Zbl 07745016
[218] M. Lukáčová-Medvid’ová, I. Peshkov, and A. Thomann, An implicit-explicit solver for a two-fluid single-temperature model, J. Comput. Phys., 498 (2024), 112696. · Zbl 07797668
[219] S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Commun. Pure Appl. Math., 34 (1981), 481-524. · Zbl 0476.76068
[220] S. Dellacherie, Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number, J. Comput. Phys., 229 (2010), 978-1016. · Zbl 1329.76228
[221] S. Boscarino, F. Filbet, and G. Russo, High Order Semi-implicit Schemes for Time Depen-dent Partial Differential Equations, J. Sci. Comput., 68 (2016), 975-1001. · Zbl 1353.65075
[222] S. Boscarino, G. Russo, and L. Scandurra, All Mach number second order semi-implicit scheme for the Euler equations of gas dynamics, J. Sci. Comput., 77 (2018), 850-884. · Zbl 1407.65139
[223] G. Bispen, M. Lukáčová-Medvid’ová, and L. Yelash, Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation, J. Comput. Phys., 335 (2017), 222-248. References · Zbl 1375.76023
[224] D. Breit, E. Feireisl, and M. Hofmanová, Solution semiflow to the isentropic Euler system, Arch. Ration. Mech. Anal. 235 (2020), 167-194. · Zbl 1441.35164
[225] C. M. Dafermos, The entropy rate admissibility criterion for solutions of hyperbolic conser-vation laws, J. Differential Equations 14 (1973), 202-212. · Zbl 0262.35038
[226] C. De Lellis and L. Székelyhidi, Jr., On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal. 195 (2010), 225-260. · Zbl 1192.35138
[227] A. D. Wallace, A fixed-point theorem, Bull. Amer. Math. Soc. 51 (1945), 413-416. · Zbl 0060.40104
[228] M. Westdickenberg, Minimal acceleration for the multi-dimensional isentropic Euler equa-tions, Arch. Ration. Mech. Anal. 247 (2023), Paper No. 35, 37. Reporter: Yongle Liu · Zbl 1515.35199
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.