×

Analyzing complex mathematical model behavior by partial least squares regression-based multivariate metamodeling. (English) Zbl 07912747

MSC:

62-08 Computational methods for problems pertaining to statistics
Full Text: DOI

References:

[1] KleijnenJPC. Design and Analysis of Simulation Experiments. 1st ed.New York: Springer; 2007.
[2] TøndelK, NiedererSA, LandS, SmithNP. Insight into model mechanisms through automatic parameter fitting: a new methodological framework for model development. BMC Syst Biol2014, 8:59.
[3] TøndelK, VikJO, MartensH, IndahlUG, SmithN, OmholtSW. Hierarchical multivariate regression‐based sensitivity analysis reveals complex parameter interaction patterns in dynamic models. Chemometr Intell Lab2013, 120:25-41. doi:10.1016/j.chemolab.2012.10.006.
[4] MartensH, VeflingstadS, PlahteE, MartensM, BertrandD, OmholtS. The genotype‐phenotype relationship in multicellular pattern‐generating models ‐ the neglected role of pattern descriptors. BMC Syst Biol2009, 3:87. doi:10.1186/1752‐0509‐3‐87.
[5] IsaevaJ, MartensM, SæbøS, WyllerJA, MartensH. The modelome of line curvature: many nonlinear models approximated by a single bi‐linear metamodel with verbal profiling. Phys Nonlinear Phenom2012, 241:877-889. doi:10.1016/j.physd.2012.02.002. · Zbl 1320.92052
[6] IsaevaJ, SæboS, WyllerJA, NhekS, MartensH. Fast and comprehensive fitting of complex mathematical models to massive amounts of empirical data. Chemometr Intell Lab2012, 117:13-21. doi:10.1016/j.chemolab.2011.04.009.
[7] IsaevaJ, SæbøS, WyllerJA, WolkenhauerO, MartensH. Nonlinear modelling of curvature by bi‐linear metamodelling. Chemometr Intell Lab2012, 117:2-12. doi:10.1016/j.chemolab.2011.04.010.
[8] TøndelK, IndahlUG, GjuvslandAB, OmholtSW, MartensH. Multi‐way metamodelling facilitates insight into the complex input‐output maps of nonlinear dynamic models. BMC Syst Biol2012, 6:88.
[9] ContiS, O’HaganA. Bayesian emulation of complex multi‐output and dynamic computer models. J Stat Plan Inference2010, 140:640-651. doi:10.1016/j.jspi.2009.08.006. · Zbl 1177.62033
[10] CacuciDG. Sensitivity and Uncertainty Analysis: Theory, vol. 1. 1st ed.Boca Raton, FL: Chapman and Hall/CRC; 2003. · Zbl 1030.60001
[11] CampbellK, McKayMD, WilliamsBJ. Sensitivity analysis when model outputs are functions. Reliab Eng Syst Saf2006, 91:1468-1472. doi:10.1016/j.ress.2005.11.049.
[12] WoldS, MartensH, WoldH. The Multivariate Calibration Method in Chemistry Solved by the Method. Lecturer Notes in Mathematics. Matrix Pencils. Heidelberg: Springer‐Verlag; 1983, 286-293.
[13] AbdiH. Partial least squares regression and projection on latent structure regression (PLS regression). WIREs: Comput Stat2010, 2:97-106. doi:10.1002/wics.51.
[14] Esposito VinziV, RussolilloG. Partial least squares algorithms and methods. WIREs: Comput Stat2013, 5:1-19. doi:10.1002/wics.1239. · Zbl 1540.62011
[15] FavoreelW, De MoorB, Van OverscheeP. Subspace state space system identification for industrial processes. J Process Control2000, 10:149-155. doi:10.1016/S0959‐1524(99)00030‐X.
[16] SobieEA. Parameter sensitivity analysis in electrophysiological models using multivariable regression. Biophys J2009, 96:1264-1274. doi:10.1016/j.bpj.2008.10.056.
[17] MartensH, MågeI, TøndelK, IsaevaJ, HøyM, SæbøS. Multi‐level binary replacement (MBR) design for computer experiments in high‐dimensional nonlinear systems. J Chemometr2010, 24:748-756.
[18] TøndelK, GjuvslandAB, MågeI, MartensH. Screening design for computer experiments: metamodelling of a deterministic mathematical model of the mammalian circadian clock. J Chemometr2010, 24:738-747.
[19] SarkarAX, SobieEA. Regression analysis for constraining free parameters in electrophysiological models of cardiac cells. PLoS Comput Biol2010, 6:9. doi:10.1371/journal.pcbi.1000914.
[20] TøndelK, IndahlUG, GjuvslandAB, VikJO, HunterP, OmholtSW, MartensH. Hierarchical cluster‐based partial least squares regression is an efficient tool for metamodelling of nonlinear dynamic models. BMC Syst Biol2011, 5:90.
[21] MansiT, VoigtI, MengueEA, IonasecR, GeorgescuB, NoackT, SeeburgerJ, ComaniciuD. Towards patient‐specific finite‐element simulation of MitralClip procedure. In: FichtingerG (ed.), MartelA (ed.), PetersT (ed.), eds. Medical Image Computing and Computer‐Assisted Intervention ‐ MICCAI 2011. Springer Berlin Heidelberg: 2011, 452-459.
[22] MansiT, GeorgescuB, HussanJ, HunterPJ, KamenA, ComaniciuD. Data‐driven reduction of a cardiac myofilament model. In: OurselinS (ed.), RueckertD (ed.), SmithN (ed.), eds. Functional Imaging and Modeling of the Heart. Berlin, Germany: Springer Berlin Heidelberg; 2013, 232-240.
[23] ZettinigO, MansiT, GeorgescuB, KayvanpourE, Sedaghat‐HamedaniF, AmrA, HaasJ, SteenH, MederB, KatusH, et al. Fast data‐driven calibration of a cardiac electrophysiology model from images and ECG. In: MoriK (ed.), SakumaI (ed.), SatoY (ed.), et al., eds. Medical Image Computing and Computer Assisted Intervention - MICCAI 2013. Berlin, Germany: Springer Berlin Heidelberg; 2013, 1-8.
[24] ZettinigO, MansiT, GeorgescuB, RapakaS, KamenA, HaasJ, FreseKS, Sedaghat‐HamedaniF, KayvanpourE, AmrA, et al. From medical images to fast computational models of heart electromechanics: an integrated framework towards clinical Use. In: OurselinS (ed.), RueckertD (ed.), SmithN (ed.), eds. Functional Imaging and Modeling of the Heart. Berlin, Germany: Springer Berlin Heidelberg; 2013, 249-258.
[25] ManfrenM, AsteN, MoshksarR. Calibration and uncertainty analysis for computer models – a meta‐model based approach for integrated building energy simulation. Appl Energy2013, 103:627-641. doi:10.1016/j.apenergy.2012.10.031.
[26] SmithNP, CrampinEJ, NiedererSA, BassingthwaighteJB, BeardDA. Computational biology of cardiac myocytes: proposed standards for the physiome. J Exp Biol2007, 210:1576-1583. doi:10.1242/jeb.000133.
[27] NiedererSA, FinkM, NobleD, SmithNP. A meta‐analysis of cardiac electrophysiology computational models. Exp Physiol2009, 94:486-495. doi:10.1113/expphysiol.2008.044610.
[28] HugheyJJ, LeeTK, CovertMW. Computational modeling of mammalian signaling networks. WIREs: Syst Biol Med2010, 2:194-209. doi:10.1002/wsbm.52.
[29] GutenkunstRN, WaterfallJJ, CaseyFP, BrownKS, MyersCR, SethnaJP. Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol2007, 3:e189. doi:10.1371/journal.pcbi.0030189.
[30] VilelaM, VingaS, MaiaMA, VoitEO, AlmeidaJS. Identification of neutral biochemical network models from time series data. BMC Syst Biol2009, 3:47. doi:10.1186/1752‐0509‐3‐47.
[31] CacuciDG, Ionescu‐BujorM, NavonIM. Sensitivity and Uncertainty Analysis: Applications to Large‐Scale Systems, vol. 2. 1st ed.Boca Raton, FL: CRC Press; 2005. · Zbl 1083.60002
[32] SaltelliA, RattoM, AndresT, CampolongoF, CariboniJ, GatelliD, SaisanaM, TarantolaS. Global Sensitivity Analysis. The Primer. Chichester, UK: Wiley‐Interscience; 2008. · Zbl 1161.00304
[33] LloydCM, LawsonJR, HunterPJ, NielsenPF. The CellML model repository. Bioinformatics2008, 24:2122-2123. doi:10.1093/bioinformatics/btn390.
[34] FennerJ, BrookB, ClapworthyG, CoveneyP, FeipelV, GregersenH, HoseD, KohlP, LawfordP, McCormackK, et al. The EuroPhysiome, STEP and a roadmap for the virtual physiological human. Philos Trans R Soc Math Phys Eng Sci2008, 366:2979-2999. doi:10.1098/rsta.2008.0089.
[35] ClapworthyG, VicecontiM, CoveneyPV, KohlP. The virtual physiological human: building a framework for computational biomedicine I. Editorial. Philos Transact A Math Phys Eng Sci2008, 366:2975-2978. doi:10.1098/rsta.2008.0103.
[36] HunterP, CoveneyPV, deBonoB, DiazV, FennerJ, FrangiAF, HarrisP, HoseR, KohlP, LawfordP, et al. A vision and strategy for the virtual physiological human in 2010 and beyond. Philos Trans R Soc Math Phys Eng Sci2010, 368:2595-2614. doi:10.1098/rsta.2010.0048.
[37] HuckaM, FinneyA, SauroHM, BolouriH, DoyleJC, KitanoH, ArkinAP, BornsteinBJ, BrayD, Cornish‐BowdenA, et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics2003, 19:524-531. doi:10.1093/bioinformatics/btg015.
[38] HunterPJ, BorgTK. Integration from proteins to organs: the physiome project. Nat Rev Mol Cell Biol2003, 4:237-243. doi:10.1038/nrm1017.
[39] CrampinEJ, HalsteadM, HunterP, NielsenP, NobleD, SmithN, TawhaiM. Computational physiology and the Physiome Project. Exp Physiol2004, 89:1-26.
[40] BassingthwaighteJ, HunterP, NobleD. The cardiac physiome: perspectives for the future. Exp Physiol2009, 94:597-605. doi:10.1113/expphysiol.2008.044099.
[41] HunterP. Modeling Human Physiology: The IUPS/EMBS Physiome Project. 2010. Available at: http://researchspace.auckland.ac.nz/handle/2292/239. (Accessed August 18, 2010).
[42] KohlP, CoveneyP, ClapworthyG, VicecontiM. The virtual physiological human. Editorial. Philos Transact A Math Phys Eng Sci2008, 366:3223-3224. doi:10.1098/rsta.2008.0102.
[43] KohlP, NobleD. Systems biology and the virtual physiological human. Mol Syst Biol2009, 5:292. doi:10.1038/msb.2009.51.
[44] KohlP, VicecontiM. The virtual physiological human: computer simulation for integrative biomedicine II. Philos Transact A Math Phys Eng Sci2010, 368:2837-2839. doi:10.1098/rsta.2010.0098.
[45] LawfordPV, NarracottAV, McCormackK, BisbalJ, MartinC, BrookB, ZachariouM, KohlP, FletcherK, Diaz‐ZuccariniV. Virtual physiological human: training challenges. Philos Trans R Soc Math Phys Eng Sci2010, 368:2841-2851. doi:10.1098/rsta.2010.0082.
[46] NiedererSA, KerfootE, BensonAP, BernabeuMO, BernusO, BradleyC, CherryEM, ClaytonR, FentonFH, GarnyA, et al. Verification of cardiac tissue electrophysiology simulators using an N‐version benchmark. Philos Trans R Soc Math Phys Eng Sci2011, 369:4331-4351. doi:10.1098/rsta.2011.0139.
[47] FriedmanLW. The Simulation Metamodel. Norwell, MA: Kluwer Academic Publishers; 1996.
[48] EmmerichM, GiotisA, ÖzdemirM, BäckT, GiannakoglouK. Metamodel‐Assisted Evolution Strategies. In: Parallel Problem Solving from Nature, vol. VII. Berlin, Germany: Springer; 2002, 361-370.
[49] MeckesheimerM, BookerAJ, BartonRR, SimpsonTW. Computationally inexpensive metamodel assessment strategies. AIAA J2002, 40:2053-2060.
[50] TuJ. Cross‐validated multivariate metamodeling methods for physics‐based computer simulations. In: Proceedings of the IMAC‐XXI, Kissimmee, Florida, 2003.
[51] HendrickxW, DhaeneT. In: The Fourth International Workshop on Multidimensional Systems ‐ NDS, Wuppertal, Germany, 2005, 212-216.
[52] VianaFAC, GoguC, HaftkaRT. Making the most out of surrogate models: tricks of the trade. In: ASME 2010 International Design Engineering Technical Conference IDETC/CIE, Montreal, Canada, 2010.
[53] BoopathyK, RumpfkeilMP. A multivariate interpolation and regression enhanced kriging surrogate model. In: 21st AIAA Fluid Dynamics Conference, San Diego, USA, 2013.
[54] ShihDT, KimSB, ChenVCP, RosenbergerJM, PillaVL. Efficient computer experiment‐based optimization through variable selection. Ann Oper Res2014, 216:287-305. doi:10.1007/s10479‐012‐1129‐y. · Zbl 1296.90083
[55] BatmazI, TunaliS. Small response surface designs for metamodel estimation. Eur J Oper Res2003, 145:455-470. · Zbl 1011.90506
[56] KalosMH, WhitlockPA. Monte Carlo Methods Volume 1: Basics. 1st ed.New York: John Wiley & Sons, Inc.; 1986. · Zbl 0655.65004
[57] LiuJS. Monte Carlo Strategies in Scientific Computing. New York: Springer; 2008. · Zbl 1132.65003
[58] SantnerTJ, WilliamsBJ, NotzW. The Design and Analysis of Computer Experiments. New York: Springer; 2003. · Zbl 1041.62068
[59] McKayMD, LosASL, BeckmanRJ, ConoverWJ. Comparison the three methods for selecting values of input variable in the analysis of output from a computer code. Technometrics1979, 21:239-245. · Zbl 0415.62011
[60] MartensH. Non‐linear multivariate dynamics modelled by PLSR. In: 6th International Conference on Partial Least Squares and Related Methods. Publishing House of Electronics Industry, Beijing, 2009, 139-144.
[61] MartensH, TøndelK, TafintsevaV, KohlerA, PlahteE, VikJO, GjuvslandAB, OmholtSW. ‐based multivariate metamodeling of dynamic systems. In: AbdiH (ed.), ChinWW (ed.), VinziVE (ed.), et al., eds. New Perspectives in Partial Least Squares and Related Methods. New York: Springer; 2013, 3-30.
[62] AllenTT, YuL, SchmitzJ. An experimental design criterion for minimizing meta‐model prediction errors applied to die casting process design. J R Stat Soc Ser C Appl Stat2003, 52:103-117. · Zbl 1111.62385
[63] WangH, LiE, LiGY, ZhongZH. Development of metamodeling based optimization system for high nonlinear engineering problems. Adv Eng Softw2008, 39:629-645. doi:10.1016/j.advengsoft.2007.10.001.
[64] XiongF, XiongY, ChenW, YangS. Optimizing Latin hypercube design for sequential sampling of computer experiments. Eng Optim2009, 41:793-810. doi:10.1080/03052150902852999.
[65] MartensH, StarkE. Extended multiplicative signal correction and spectral interference subtraction: new preprocessing methods for near infrared spectroscopy. J Pharm Biomed Anal1991, 9:625-635.
[66] KohlerA, Sulé‐SusoJ, SockalingumGD, TobinM, BahramiF, YangY, PijankaJ, DumasP, CotteM, van PittiusDG, et al. Estimating and correcting Mie scattering in synchrotron‐based microscopic fourier transform infrared spectra by extended multiplicative signal correction. Appl Spectrosc2008, 62:259-266. doi:10.1366/000370208783759669.
[67] KohlerA, ZimonjaM, SegtnanV, MartensH. Normal variate, multiplicative signal correction and extended multiplicative signal correction preprocessing in biospectroscopy. In: BrownS (ed.), TaulerR (ed.), WalczB (ed.), eds. Comprehensive Chemometrics. Oxford: Elsevier; 2009, 139-162.
[68] MartensH, NæsT. Multivariate Calibration. Chichester: John Wiley and Sons; 1989. · Zbl 0732.62109
[69] WoldS, RuheA, WoldH, DunnWJ. The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J Sci Stat Comput1984, 5:735-743. · Zbl 0545.62044
[70] MartensH, MartensM. NIR spectroscopy ‐ applied philosophy. Infra‐red spectroscopy. In: HildrumKI (ed.), IsakssonT (ed.), NaesT (ed.), TandbergA (ed.), eds. Bridging Gap Data Analisis and NIR Applications. Chichester: Ellis Horwood; 1992, 1-10.
[71] MartensH, MartensM. Multivariate Analysis of Quality: An Introduction. 1st ed.Chichester: John Wiley & Sons Ltd.; 2001.
[72] MartensH. The informative converse paradox: windows into the unknown. Chemometr Intell Lab2011, 107:124-138. doi:16/j.chemolab.2011.02.007.
[73] MalinowskiK, McAvoyTJ, GeorgeR, DieterichS, D’SouzaWD. Maintaining tumor targeting accuracy in real‐time motion compensation systems for respiration‐induced tumor motion. Med Phys2013, 40:071709. doi:10.1118/1.4808119.
[74] VikJO, GjuvslandAB, LiL, TøndelK, NiedererSA, SmithN, HunterPJ, OmholtSW. Genotype‐phenotype map characteristics of an in silico heart cell. Front Genomic Physiol2011, 2:106. doi:10.3389/fphys.2011.00106.
[75] TafintsevaV, TøndelK, PonosovA, MartensH. Global structure of sloppiness in a nonlinear model. J Chemometr2014, doi:10.1002/cem.2651.
[76] WalczakB, MassartDL. Local modelling with radial basis function networks. Chemometr Intell Lab2000, 50:179-198. doi:10.1016/S0169‐7439(99)00056‐8.
[77] CzekajT, WuW, WalczakB. About kernel latent variable approaches and SVM. J Chemometr2005, 19:341-354. doi:10.1002/cem.937.
[78] ZerzuchaP, DaszykowskiM, WalczakB. Dissimilarity partial least squares applied to non‐linear modeling problems. Chemometr Intell Lab2012, 110:156-162. doi:10.1016/j.chemolab.2011.11.005.
[79] ZerzuchaP, WalczakB. Concept of (dis)similarity in data analysis. TrAC Trends Anal Chem2012, 38:116-128. doi:10.1016/j.trac.2012.05.005.
[80] BroR. PARAFAC. Tutorial and applications. Chemometr Intell Lab1997, 38:149-171. doi:16/S0169‐7439(97)00032‐4.
[81] BroR. Multiway calibration. Multilinear PLS. J Chemometr1996, 10:47-61. doi:10.1002/(SICI)1099‐128X(199601)10:1<47::AID‐CEM400>3.0.CO;2‐C.
[82] NordbøØ. Constructing and exploring the parameter‐to‐phenotype map of the passively inflated ventricle. PhD Thesis, Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, 2013.
[83] MartensHA, DardenneP. Validation and verification of regression in small data sets. Chemometr Intell Lab1998, 44:99-121. doi:10.1016/S0169‐7439(98)00167‐1.
[84] WuT, MartensH, HunterP, MithraratneK. Emulating facial biomechanics using multivariate partial least squares surrogate models. Int J Numer Methods Biomed Eng2014, doi:10.1002/cnm.2646.
[85] WuT, MartensH, HunterP, MithraratneK. Estimating muscle activation patterns using a surrogate model of facial biomechanics. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 2013, 7172-7175.
[86] ChuiliS, HahnJ (2005) On the use of partial least squares () and balancing for nonlinear model reduction. IEEE, 2572-2577.
[87] GubskayaAV, KholodovychV, KnightD, KohnJ, WelshWJ. Prediction of fibrinogen adsorption for biodegradable polymers: integration of molecular dynamics and surrogate modeling. Polymer2007, 48:5788-5801. doi:10.1016/j.polymer.2007.07.007.
[88] WeiZ, WeiW, GuofengX. Non‐Linear Partial Least Squares Response Surface Method for Structural Reliability Analysis. Harbin, China: Harbin Institute of Technology, HIT; 2012.
[89] GauchiJ‐P. PLS‐based global sensitivity analysis for numerical models. An application to aircraft infrared signatures. In: The 7th International Conference on Partial Least Squares and Related Methods. Houston, TX: Springer Verlag; 2012, 1-7.
[90] TøndelK. Prediction of homology model quality with multivariate regression. J Chem Inf Comput Sci2004, 44:1540-1551. doi:10.1021/ci049924m.
[91] LehutaS, MahévasS, PetitgasP, PelletierD. Combining sensitivity and uncertainty analysis to evaluate the impact of management measures with ISIS-fish: marine protected areas for the Bay of Biscay anchovy (Engraulis encrasicolus) fishery. ICES J Mar Sci2010, 67:1063-1075. doi:10.1093/icesjms/fsq002.
[92] MartensM, VeflingstadSR, PlahteE, BertrandD, MartensH. A sensory scientific approach to visual pattern recognition of complex biological systems. Food Qual Prefer2010, 21:977-986. doi:10.1016/j.foodqual.2010.04.013.
[93] BerglundA, WoldS. INLR, implicit non‐linear latent variable regression. J Chemometr1997, 11:141-156. doi:10.1002/(SICI)1099‐128X(199703)11:2<141::AID‐CEM461>3.0.CO;2‐2.
[94] WestadF, DiepoldK, MartensH. QR‐PLSR: Reduced‐rank regression for high‐speed hardware implementation. J Chemometr1996, 10:439-451. doi:10.1002/(SICI)1099‐128X(199609)10:5/6<439::AID‐CEM443>3.0.CO;2‐C.
[95] SrinivasanBV, SchwartzWR, DuraiswamiR, DavisL Partial least squares on graphical processor for efficient pattern recognition. Computer Science Department, University of Maryland; CS‐TR‐4968, 2010.
[96] HassaniS, MartensH, QannariEM, HanafiM, BorgeGI, KohlerA. Analysis of ‐ omics data: graphical interpretation ‐ and validation tools in multi‐block methods. Chemometr Intell Lab2010, 104:140-153. doi:10.1016/j.chemolab.2010.08.008.
[97] NæsT, TomicO, MevikB‐H, MartensH. Path modelling by sequential PLS regression. J Chemometr2011, 25:28-40. doi:10.1002/cem.1357.
[98] AbdiH, WilliamsLJ. Partial least squares methods: partial least squares correlation and partial least square regression. Methods Mol Biol2013, 930:549-579. doi:10.1007/978‐1‐62703‐059‐5_23.
[99] KlompstraMB, BakkerGJ, BlomHAP. Sensitivity analysis in Monte Carlo simulation based rare event estimation. Safety, Complexity and Responsibility based design and validation of highly automated Air Traffic Management; EU project no. TREN/07/FP6AE/S07.71574/037180 IFLY Deliverable D7.2f, Version 1.3, 2010.
[100] De JongS. SIMPLS: An alternative approach to partial least squares regression. Chemometr Intell Lab1993, 18:251-263. doi:10.1016/0169‐7439(93)85002‐X.
[101] AnderssonM. A comparison of nine PLS1 algorithms. J Chemometr2009, 23:518-529. doi:10.1002/cem.1248.
[102] GolubG, KahanW. Calculating the singular values and pseudo‐inverse of a matrix. J Soc Ind Appl Math Ser B Numer Anal1965, 2:205-224. · Zbl 0194.18201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.