×

Time series clustering and classification via frequency domain methods. (English) Zbl 07910835


MSC:

62-08 Computational methods for problems pertaining to statistics
Full Text: DOI

References:

[1] Albert, J. H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88(422), 669-679. · Zbl 0774.62031
[2] Bauwens, L., & Rambouts, J. V. K. (2007). Bayesian clustering of many GARCH models. Econometric Reviews, 26, 365-386. · Zbl 1112.62016
[3] Böhm, H., Ombao, H., vonSachs, R., & Sanes, J. (2010). Classification of multivariate non‐stationary signals: The SLEX‐shrinkage approach. Journal of Statistical Planning and Inference, 140, 3754-3763. · Zbl 1233.62128
[4] Bouveyron, C., Côme, E., & Jacques, J. (2015). The discriminative functional mixture model for a comparative analysis of bike sharing systems. The Annals of Applied Statistics, 9, 1726-1760. · Zbl 1397.62511
[5] Bradley, P. E. (2008). Degenerating families of dendrograms. Journal of Classification, 25, 27-42. · Zbl 1260.62040
[6] Bretthorst, G. L. (2003). Frequency estimation and generalized Lomb‐Scargle Periodograms. In E. D.Feigelson (ed.) & G. J.Babu (ed.) (Eds.), Statistical challenges in astronomy (pp. 309, 325-324, with commentary by Thomas J. Loredo). New York, NY: Springer‐Verlag.
[7] Brillinger, D. R. (1981). Time series: Data analysis and theory (Expanded Edition. San Francisco, CA: Holden Day. · Zbl 0486.62095
[8] Brillinger, D. R., & Rosenblatt, M. (1967). Asymptotic theory of estimates of k‐th order spectra. In B.Harris (ed.) (Ed.), Spectral analysis of time series (pp. 153-158). New York, NY: John Wiley & Sons. · Zbl 0157.47402
[9] Brockwell, P. J., & Davis, R. A. (1991). Time series: Theory and methods (2nd ed.). New York, NY: Springer‐Verlag. · Zbl 0709.62080
[10] Brown, J. C., Kastens, J. H., Coutinho, A. C., deCastro Victoria, D., & Bishop, C. R. (2013). Classifying multiyear agricultural land use data from Mato Grosso using time‐series MODIS vegetation index data. Remote Sensing of Environment, 130, 39-50.
[11] Choi, H. I., & Williams, W. J. (1989). Improved time‐frequency representation of multiple component signal using exponential kernel. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37, 862-871.
[12] Coates, D. S., & Diggle, P. J. (1986). Tests for comparing two estimated spectral densities. Journal of Time Series Analysis, 7, 7-20. · Zbl 0581.62076
[13] Corduas, M., & Piccolo, D. (2008). Time series clustering and classification by the autoregressive metric. Computational Statistics and Data Analysis, 52, 1860-1872. · Zbl 1452.62624
[14] Crainiceanu, C. M., Staicu, A.‐M., & Di, C.‐Z. (2009). Generalized multilevel functional regression. Journal of the American Statistical Association, 104(488), 1550-1561. · Zbl 1205.62099
[15] Cressie, N., & Wikle, C. K. (2011). Statistics for Spatio‐temporal data. Hoboken, NJ: Wiley. · Zbl 1273.62017
[16] Dahlhaus, R. (1997). Fitting time series models to nonstationary processes. Annals of Statistics, 25, 1-37. · Zbl 0871.62080
[17] Dahlhaus, R. (2001). A likelihood approximation for locally stationary processes. Annals of Statistics, 28, 1762-1794. · Zbl 1010.62078
[18] Fiecas, M., & vonSachs, R. (2014). Data‐driven shrinkage of the spectral density matrix of a high‐dimensional time series. Electronic Journal of Statistics, 8, 2975-3003. · Zbl 1320.62121
[19] Fokianos, K., & Promponas, V. J. (2012). Biological applications of time series frequency domain clustering. Journal of Time Series Analysis, 33(5), 744-756. · Zbl 1281.62232
[20] Fokianos, K., & Savvides, A. (2008). On comparing several spectral densities. Technometrics, 50, 317-331.
[21] Fruwirth‐Schnatter, S., & Kaufmann, S. (2008). Model‐based clustering of multiple time series. Journal of Business and Economic Statistics, 26, 78-89.
[22] George, E. I., & McCulloch, R. E. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association, 88(423), 881-889.
[23] George, E. I., & McCulloch, R. E. (1997). Approaches for Bayesian variable selection. Statistica Sinica, 7(2), 339-373. · Zbl 0884.62031
[24] Giordano, F., Rocca, M. L., & Parrella, M. L. (2017). Clustering complex time‐series databases by using periodic components. Statistical Analysis and Data Mining: The ASA Data Science Journal, 10(2), 89-106. · Zbl 07260704
[25] Gröchenig, K. (2001). Foundations of time‐frequency analysis. New York, NY: Birkhäuser, Boston. · Zbl 0966.42020
[26] Harvill, J. L., Kohli, P., & Ravishanker, N. (2017). Clustering of nonlinear and nonstationary time series using BSLEX. Methodology and Computing in Applied Probability, 19(3), 935-955. · Zbl 1384.37110
[27] Harvill, J. L., Ravishanker, N., & Ray, B. K. (2013). Bispectral‐based methods for clustering time series. Computational Statistics and Data Analysis, 64, 113-131. · Zbl 1468.62074
[28] Heard, N. A., Homes, C., & Stephens, D. A. (2006). A quantitative study of gene regulation involved in the immune response of Anopheline mosquitoes: An application of Bayesian hierarchical clustering of curves. Journal of the American Statistical Association, 101, 18-29. · Zbl 1118.62368
[29] Hinich, M. (1982). Testing for Gaussianity and linearity for a stationary time series. Journal of Time Series Analysis, 3, 169-176. · Zbl 0502.62079
[30] Hinneburg, A., Habich, D., & Karnstedt, M. (2006). Analyzing data streams by online DFT. Paper presented at the ECML/PKDD‐2006 International Workshop on Knowledge Discovery from Data Streams, IWKDDS‐2006, Pittsburgh, PA, 67-76.
[31] Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model averaging: A tutorial. Statistical Science, 14(4), 382-417. · Zbl 1059.62525
[32] Holan, S. H., Davis, G. M., Wildhaber, M. L., DeLonay, A. J., & Papoulias, D. M. (2009). Hierarchical Bayesian Markov switching models with application to predicting spawning success of shovelnose sturgeon. Journal of the Royal Statistical Society: Series C: Applied Statistics, 58(1), 47-64.
[33] Holan, S. H., Wikle, C. K., Sullivan‐Beckers, L. E., & Cocroft, R. B. (2010). Modeling complex phenotypes: Generalized linear models using spectrogram predictors of animal communication signals. Biometrics, 66(3), 914-924. · Zbl 1202.62153
[34] Holan, S. H., Yang, W.‐H., Matteson, D. S., & Wikle, C. K. (2012). An approach for identifying and predicting economic recessions in real‐time using time-frequency functional models. Applied Stochastic Models in Business and Industry, 28(6), 485-499. · Zbl 1286.91106
[35] Huang, H., Ombao, H., & Stoffer, D. (2004). Classification and discrimination of non‐stationary time series using the SLEX model. Journal of the American Statistical Association, 99, 763-774. · Zbl 1117.62357
[36] Ioannou, A., Fokianos, K., & Promponas, V. (2010). Spectral density ratio based clustering for the binary segmentation of protein sequences: A comparative study. Biosystems, 100, 132-143.
[37] Johnson, R., & Wichern, D. (2002). Applied multivariate statistical analysis. London, England: Prentice Hall.
[38] Juarez, M. A., & Steel, M. F. J. (2010). Model‐based clustering of non‐Gaussian panel data based on skew‐t distributions. Journal of Business and Economic Statistics, 28, 52-66. · Zbl 1198.62097
[39] Kakizawa, Y., Shumway, R. H., & Taniguchi, M. (1998). Discrimination and clustering for multivariate time series. Journal of the American Statistical Association, 93, 328-340. · Zbl 0906.62060
[40] Kalpakis, K., Gada, D., & Puttagunta, V. (2001). Distance measures for effective clustering of ARIMA time‐series. Paper presented at Proceedings of the 2001 I.E. International Conference on Data Mining, San Jose, CA, 273-280.
[41] Liao, T. W. (2005). Clustering of time series data: A survey. Pattern Recognition, 38, 1857-1874. · Zbl 1077.68803
[42] Lomb, N. R. (1976). Least‐squares frequency analysis of unevenly spaced data. Astrophysics and Space Science, 39, 447-462.
[43] Martinez, J. G., Bohn, K. M., Carroll, R. J., & Morris, J. S. (2013). A study of Mexican free‐tailed bat chirp syllables: Bayesian functional mixed models for nonstationary acoustic time series. Journal of the American Statistical Association, 108(502), 514-526. · Zbl 06195957
[44] Nikias, C. L., & Petropolu, A. P. (1996). Higher‐order spectral analysis. New York, NY: Prentice‐Hall.
[45] Ombao, H., Raz, J., Von Sachs, R., G., & W. (2002). The SLEX model of non‐stationary random processes. Annals of the Institute of Statistical Mathematics, 54, 171-200. · Zbl 0993.62082
[46] Ombao, H., Raz, J., Von Sachs, R., & Malow, B. (2001). Automatic statistical analysis of bivariate nonstationary time series. Journal of the American Statistical Association, 96, 543-560. · Zbl 1018.62080
[47] Ombao, H., Von Sachs, R., & Guo, W. (2005). SLEX analysis of multivariate non‐stationary time series. Journal of the American Statistical Association, 100, 519-531. · Zbl 1117.62407
[48] Oppenheim, A. V., Schafer, R., & Buck, J. (1999). Discrete‐time signal processing. Upper Saddle River, NJ: Prentice Hall.
[49] Oppenheim, A. V., & Schafer, R. W. (1989). Digital signal processing. Englewood Cliffs, NJ: Prentice‐Hall. · Zbl 0676.42001
[50] Ou, H., Au, W. W., Zurk, L. M., & Lammers, M. O. (2013). Automated extraction and classification of time‐frequency contours in humpback vocalizations. The Journal of the Acoustical Society of America, 133(1), 301-310.
[51] Pasha, S. A. & Leong, P. H. W. (2013). Cluster analysis of high‐dimensional high‐frequency financial time series. Paper presented at 2013 I.E. Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr), 74-81.
[52] Percival, D. B., & Walden, A. T. (2000). Wavelet methods for time series analysis. London, England: Cambridge University Press. · Zbl 0963.62079
[53] Priestley, M., & Subba Rao, T. (1969). A test for non‐stationarity of time‐series. Journal of the Royal Statistical Society: Series B: Methodological, 31(1), 140-149. · Zbl 0182.51403
[54] Priestley, M. B. (1965). Evolutionary spectra and nonstationary processes. Journal of the Royal Statistical Society: Series B, 28, 228-240. · Zbl 0237.62058
[55] Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66, 846-850.
[56] Ravishanker, N., Hosking, J. R. M., & Mukhopadhyay, J. (2010). Spectrum based comparison of multivariate time series. Methodology and Computing in Applied Probability, 12, 749-762. · Zbl 1200.62113
[57] Sakiyama, K., & Taniguchi, M. (2004). Discrimination for locally stationary random processes. Journal of Multivariate Analysis, 90, 282-300. · Zbl 1050.62066
[58] Savvides, A., Promponas, V. J., & Fokianos, K. (2008). Clustering of biological time series by cepstral coefficients based distances. Pattern Recognition, 41(7), 2398-2412. · Zbl 1138.68515
[59] Scargle, J. D. (1982). Studies in astronomical time series analysis II. Statistical aspects of spectral analysis of unevenly sampled data. Astrophysical Journal, 263, 835-853.
[60] Scargle, J. D. (1989). Studies in astronomical time series analysis III. Fourier transforms, autocorrelation and cross‐correlation functions of unevenly spaced data. Astrophysical Journal, 343, 874-887.
[61] Sefidmazgi, M. G., Sayemuzzaman, M., & Homaifar, A. (2014). Non‐stationary time series clustering with application to climate systems. In M. Jamshidi, V. Kreinovich, J. Kacprzyk (Eds.), Advance trends in soft computing Proceedings of WCSC 2013, December 16-18, San Antonio, Texas, USA (pp. 55-63). New York: Springer‐Verlag. · Zbl 1303.62041
[62] Shumway, R., & Unger, A. (1974). Linear discriminant functions for stationary time series. Journal of the American Statistical Association, 69(348), 948-956. · Zbl 0296.62085
[63] Stoffer, D. (2015). Spectral analysis of qualitative time series. In R. A.Davis (ed.), S. H.Holan (ed.), R.Lund (ed.), & N.Ravishanker (ed.) (Eds.), Handbook of discrete‐valued time series (pp. 287-309). Boca Raton, FL: CRC Press. · Zbl 1331.62003
[64] Tapinos, A., & Mendes, P. (2013). A method for comparing multivariate time series with different dimensions. PLoS One, 8(2), e54201.
[65] Tsay, R. S. (1991). Detecting and modeling nonlinearity in univariate time series analysis. Statistica Sinica, 1, 431-451. · Zbl 0824.62085
[66] Vlachos, M., Lin, J., Keogh, E., & Gunopulos, D. (2003). A wavelet based anytime algorithm for k‐means clustering of time series. Paper presented at Proceedings of the Third SIAM International Conference on Data Mining, San Fransisco, CA.
[67] Wickerhauser, M. (1994). Adapted wavelet analysis from theory to software. Wellesley, MA: IEEE Press. · Zbl 0818.42011
[68] Wigner, E. (1932). On the quantum correction for thermodynamic equilibrium. Physical Review, 40(5), 749-759. · JFM 58.0948.07
[69] Xiong, X., & Yeung, D. Y. (2004). Time series clustering with ARMA mixtures. Pattern Recognition, 37, 1675-1689. · Zbl 1117.62488
[70] Yang, W.‐H., Wikle, C. K., Holan, S. H., & Wildhaber, M. L. (2013). Ecological prediction with nonlinear multivariate time‐frequency functional data models. Journal of Agricultural, Biological, and Environmental Statistics, 18(3), 450-474. · Zbl 1303.62101
[71] Yao, F., & Müller, H.‐G. (2010). Functional quadratic regression. Biometrika, 97(1), 49-64. · Zbl 1183.62113
[72] Zhao, Y., & Karypis, G. (2004). Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning, 55, 311-331. · Zbl 1089.68615
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.